train.py 16.9 KB
Newer Older
R
root 已提交
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
4 5 6 7
import os
import numpy as np
import time
import sys
R
root 已提交
8 9
import functools
import math
10
import paddle
11
import paddle.fluid as fluid
12
import paddle.dataset.flowers as flowers
13 14
import reader
import argparse
R
ruri 已提交
15 16 17 18
import functools
import subprocess
import utils
from utils.learning_rate import cosine_decay
T
typhoonzero 已提交
19
from utils.fp16_utils import create_master_params_grads, master_param_to_train_param
20
from utility import add_arguments, print_arguments
R
root 已提交
21 22 23 24
import paddle.fluid.profiler as profiler

IMAGENET1000 = 1281167
#IMAGENET100 = 128660
25 26 27

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
28 29 30 31 32 33 34 35 36 37 38 39 40 41
# yapf: disable
add_arg('batch_size',       int,   256,                  "Minibatch size.")
add_arg('use_gpu',          bool,  True,                 "Whether to use GPU or not.")
add_arg('total_images',     int,   1281167,              "Training image number.")
add_arg('num_epochs',       int,   120,                  "number of epochs.")
add_arg('class_dim',        int,   1000,                 "Class number.")
add_arg('image_shape',      str,   "3,224,224",          "input image size")
add_arg('model_save_dir',   str,   "output",             "model save directory")
add_arg('with_mem_opt',     bool,  True,                 "Whether to use memory optimization or not.")
add_arg('pretrained_model', str,   None,                 "Whether to use pretrained model.")
add_arg('checkpoint',       str,   None,                 "Whether to resume checkpoint.")
add_arg('lr',               float, 0.1,                  "set learning rate.")
add_arg('lr_strategy',      str,   "piecewise_decay",    "Set the learning rate decay strategy.")
add_arg('model',            str,   "SE_ResNeXt50_32x4d", "Set the network to use.")
42
add_arg('enable_ce',        bool,  False,                "If set True, enable continuous evaluation job.")
M
minqiyang 已提交
43
add_arg('data_dir',         str,   "./data/ILSVRC2012",  "The ImageNet dataset root dir.")
R
root 已提交
44
add_arg('model_category',   str,   "models",        "Whether to use models_name or not, valid value:'models','models_name'." )
T
typhoonzero 已提交
45
add_arg('fp16',             bool,  False,                "Enable half precision training with fp16." )
T
update  
typhoonzero 已提交
46
add_arg('scale_loss',       float, 1.0,                  "Scale loss for fp16." )
R
root 已提交
47 48
add_arg('l2_decay',         float, 1e-4,                 "L2_decay parameter.")
add_arg('momentum_rate',    float, 0.9,                  "momentum_rate.")
T
typhoonzero 已提交
49
# yapf: enable
50

R
ruri 已提交
51

R
root 已提交
52
def set_models(model_category):
R
ruri 已提交
53
    global models
R
root 已提交
54 55 56 57 58
    assert model_category in ["models", "models_name"
                              ], "{} is not in lists: {}".format(
                                  model_category, ["models", "models_name"])
    if model_category == "models_name":
        import models_name as models
R
ruri 已提交
59
    else:
R
root 已提交
60
        import models as models
61 62 63 64


def optimizer_setting(params):
    ls = params["learning_strategy"]
R
root 已提交
65 66
    l2_decay = params["l2_decay"]
    momentum_rate = params["momentum_rate"]
67 68
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
R
root 已提交
69
            total_images = IMAGENET1000
Y
Yibing Liu 已提交
70
        else:
71 72 73
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)
D
Dang Qingqing 已提交
74

75 76 77 78
        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
79
        optimizer = fluid.optimizer.Momentum(
80 81
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
R
root 已提交
82 83
            momentum=momentum_rate,
            regularization=fluid.regularizer.L2Decay(l2_decay))
R
ruri 已提交
84

85 86
    elif ls["name"] == "cosine_decay":
        if "total_images" not in params:
R
root 已提交
87
            total_images = IMAGENET1000
88 89 90
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
R
root 已提交
91 92
        l2_decay = params["l2_decay"]
        momentum_rate = params["momentum_rate"]
93 94 95 96 97
        step = int(total_images / batch_size + 1)

        lr = params["lr"]
        num_epochs = params["num_epochs"]

98 99
        optimizer = fluid.optimizer.Momentum(
            learning_rate=cosine_decay(
100
                learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
R
root 已提交
101 102 103
            momentum=momentum_rate,
            regularization=fluid.regularizer.L2Decay(l2_decay))
    elif ls["name"] == "linear_decay":
R
ruri 已提交
104
        if "total_images" not in params:
R
root 已提交
105
            total_images = IMAGENET1000
R
ruri 已提交
106 107 108 109
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        num_epochs = params["num_epochs"]
R
root 已提交
110 111 112 113 114 115 116 117
        start_lr = 0.5
        l2_decay = params["l2_decay"]
        momentum_rate = params["momentum_rate"]
        end_lr = 0
        total_step = int((total_images / batch_size) * num_epochs)
        print("linear decay total steps: ", total_step)
        lr = fluid.layers.polynomial_decay(
            start_lr, total_step, end_lr, power=1)
R
ruri 已提交
118
        optimizer = fluid.optimizer.Momentum(
R
root 已提交
119 120 121
            learning_rate=lr,
            momentum=momentum_rate,
            regularization=fluid.regularizer.L2Decay(l2_decay))
122
    else:
123
        lr = params["lr"]
R
root 已提交
124 125
        l2_decay = params["l2_decay"]
        momentum_rate = params["momentum_rate"]
126
        optimizer = fluid.optimizer.Momentum(
127
            learning_rate=lr,
R
root 已提交
128 129
            momentum=momentum_rate,
            regularization=fluid.regularizer.L2Decay(l2_decay))
130

131
    return optimizer
132

R
root 已提交
133

R
ruri 已提交
134 135
def net_config(image, label, model, args):
    model_list = [m for m in dir(models) if "__" not in m]
R
root 已提交
136 137
    assert args.model in model_list, "{} is not lists: {}".format(args.model,
                                                                  model_list)
138

139 140 141
    class_dim = args.class_dim
    model_name = args.model

142 143
    if args.enable_ce:
        assert model_name == "SE_ResNeXt50_32x4d"
D
Dang Qingqing 已提交
144
        model.params["dropout_seed"] = 100
R
root 已提交
145
        class_dim = 102
146

R
root 已提交
147
    if model_name == "GoogleNet":
148 149 150 151 152 153 154 155 156 157 158
        out0, out1, out2 = model.net(input=image, class_dim=class_dim)
        cost0 = fluid.layers.cross_entropy(input=out0, label=label)
        cost1 = fluid.layers.cross_entropy(input=out1, label=label)
        cost2 = fluid.layers.cross_entropy(input=out2, label=label)
        avg_cost0 = fluid.layers.mean(x=cost0)
        avg_cost1 = fluid.layers.mean(x=cost1)
        avg_cost2 = fluid.layers.mean(x=cost2)

        avg_cost = avg_cost0 + 0.3 * avg_cost1 + 0.3 * avg_cost2
        acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
Y
Yibing Liu 已提交
159
    else:
R
root 已提交
160 161 162
        out = model.net(input=image, class_dim=class_dim)
        cost, pred = fluid.layers.softmax_with_cross_entropy(
            out, label, return_softmax=True)
T
typhoonzero 已提交
163
        if args.scale_loss > 1:
T
update  
typhoonzero 已提交
164
            avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
T
typhoonzero 已提交
165
        else:
T
update  
typhoonzero 已提交
166
            avg_cost = fluid.layers.mean(x=cost)
167

T
update  
typhoonzero 已提交
168 169
        acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
170

R
ruri 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    return avg_cost, acc_top1, acc_top5


def build_program(is_train, main_prog, startup_prog, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    model_name = args.model
    model_list = [m for m in dir(models) if "__" not in m]
    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
    model = models.__dict__[model_name]()
    with fluid.program_guard(main_prog, startup_prog):
        py_reader = fluid.layers.py_reader(
            capacity=16,
            shapes=[[-1] + image_shape, [-1, 1]],
            lod_levels=[0, 0],
            dtypes=["float32", "int64"],
            use_double_buffer=True)
        with fluid.unique_name.guard():
            image, label = fluid.layers.read_file(py_reader)
T
typhoonzero 已提交
190
            if args.fp16:
T
update  
typhoonzero 已提交
191
                image = fluid.layers.cast(image, "float16")
R
ruri 已提交
192 193 194 195 196 197 198 199 200 201 202
            avg_cost, acc_top1, acc_top5 = net_config(image, label, model, args)
            avg_cost.persistable = True
            acc_top1.persistable = True
            acc_top5.persistable = True
            if is_train:
                params = model.params
                params["total_images"] = args.total_images
                params["lr"] = args.lr
                params["num_epochs"] = args.num_epochs
                params["learning_strategy"]["batch_size"] = args.batch_size
                params["learning_strategy"]["name"] = args.lr_strategy
R
root 已提交
203 204
                params["l2_decay"] = args.l2_decay
                params["momentum_rate"] = args.momentum_rate
R
ruri 已提交
205 206

                optimizer = optimizer_setting(params)
T
typhoonzero 已提交
207
                if args.fp16:
T
typhoonzero 已提交
208
                    params_grads = optimizer.backward(avg_cost)
T
typhoonzero 已提交
209 210
                    master_params_grads = create_master_params_grads(
                        params_grads, main_prog, startup_prog, args.scale_loss)
T
update  
typhoonzero 已提交
211
                    optimizer.apply_gradients(master_params_grads)
R
root 已提交
212 213
                    master_param_to_train_param(master_params_grads,
                                                params_grads, main_prog)
T
typhoonzero 已提交
214 215
                else:
                    optimizer.minimize(avg_cost)
R
root 已提交
216
                global_lr = optimizer._global_learning_rate()
R
ruri 已提交
217

R
root 已提交
218 219 220 221
    if is_train:
        return py_reader, avg_cost, acc_top1, acc_top5, global_lr
    else:
        return py_reader, avg_cost, acc_top1, acc_top5
R
ruri 已提交
222 223 224 225 226 227 228 229 230


def train(args):
    # parameters from arguments
    model_name = args.model
    checkpoint = args.checkpoint
    pretrained_model = args.pretrained_model
    with_memory_optimization = args.with_mem_opt
    model_save_dir = args.model_save_dir
231

R
ruri 已提交
232 233 234 235 236 237 238
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    test_prog = fluid.Program()
    if args.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000

R
root 已提交
239
    train_py_reader, train_cost, train_acc1, train_acc5, global_lr = build_program(
R
ruri 已提交
240 241 242 243 244 245 246 247 248 249
        is_train=True,
        main_prog=train_prog,
        startup_prog=startup_prog,
        args=args)
    test_py_reader, test_cost, test_acc1, test_acc5 = build_program(
        is_train=False,
        main_prog=test_prog,
        startup_prog=startup_prog,
        args=args)
    test_prog = test_prog.clone(for_test=True)
250

251
    if with_memory_optimization:
R
ruri 已提交
252 253
        fluid.memory_optimize(train_prog)
        fluid.memory_optimize(test_prog)
254

255
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
256
    exe = fluid.Executor(place)
R
ruri 已提交
257
    exe.run(startup_prog)
258

259
    if checkpoint is not None:
R
ruri 已提交
260
        fluid.io.load_persistables(exe, checkpoint, main_program=train_prog)
261

262 263 264 265 266
    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

R
ruri 已提交
267 268
        fluid.io.load_vars(
            exe, pretrained_model, main_program=train_prog, predicate=if_exist)
269

R
ruri 已提交
270 271 272 273
    visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
R
root 已提交
274 275
        device_num = subprocess.check_output(
            ['nvidia-smi', '-L']).decode().count('\n')
276

R
ruri 已提交
277
    train_batch_size = args.batch_size / device_num
K
kolinwei 已提交
278
    test_batch_size = 16
279
    if not args.enable_ce:
R
ruri 已提交
280 281
        train_reader = paddle.batch(
            reader.train(), batch_size=train_batch_size, drop_last=True)
282 283 284 285 286 287
        test_reader = paddle.batch(reader.val(), batch_size=test_batch_size)
    else:
        # use flowers dataset for CE and set use_xmap False to avoid disorder data
        # but it is time consuming. For faster speed, need another dataset.
        import random
        random.seed(0)
D
Dang Qingqing 已提交
288
        np.random.seed(0)
289
        train_reader = paddle.batch(
R
ruri 已提交
290 291 292
            flowers.train(use_xmap=False),
            batch_size=train_batch_size,
            drop_last=True)
293 294 295
        test_reader = paddle.batch(
            flowers.test(use_xmap=False), batch_size=test_batch_size)

R
ruri 已提交
296 297
    train_py_reader.decorate_paddle_reader(train_reader)
    test_py_reader.decorate_paddle_reader(test_reader)
L
Luo Tao 已提交
298
    train_exe = fluid.ParallelExecutor(
R
ruri 已提交
299 300 301 302
        main_program=train_prog,
        use_cuda=bool(args.use_gpu),
        loss_name=train_cost.name)

R
root 已提交
303 304 305
    train_fetch_list = [
        train_cost.name, train_acc1.name, train_acc5.name, global_lr.name
    ]
R
ruri 已提交
306
    test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name]
307

R
ruri 已提交
308
    params = models.__dict__[args.model]().params
309
    for pass_id in range(params["num_epochs"]):
R
ruri 已提交
310 311 312

        train_py_reader.start()

313 314
        train_info = [[], [], []]
        test_info = [[], [], []]
315
        train_time = []
R
ruri 已提交
316 317 318 319
        batch_id = 0
        try:
            while True:
                t1 = time.time()
R
root 已提交
320 321
                loss, acc1, acc5, lr = train_exe.run(
                    fetch_list=train_fetch_list)
R
ruri 已提交
322 323 324 325 326 327 328 329
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(np.array(loss))
                acc1 = np.mean(np.array(acc1))
                acc5 = np.mean(np.array(acc5))
                train_info[0].append(loss)
                train_info[1].append(acc1)
                train_info[2].append(acc5)
R
root 已提交
330
                lr = np.mean(np.array(lr))
R
ruri 已提交
331 332 333
                train_time.append(period)
                if batch_id % 10 == 0:
                    print("Pass {0}, trainbatch {1}, loss {2}, \
R
root 已提交
334 335 336
                        acc1 {3}, acc5 {4}, lr{5}, time {6}"
                          .format(pass_id, batch_id, loss, acc1, acc5, "%.5f" %
                                  lr, "%2.2f sec" % period))
R
ruri 已提交
337 338 339 340
                    sys.stdout.flush()
                batch_id += 1
        except fluid.core.EOFException:
            train_py_reader.reset()
341 342 343 344

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()
R
root 已提交
345 346
        train_speed = np.array(train_time).mean() / (train_batch_size *
                                                     device_num)
R
ruri 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

        test_py_reader.start()

        test_batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc1, acc5 = exe.run(program=test_prog,
                                           fetch_list=test_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(loss)
                acc1 = np.mean(acc1)
                acc5 = np.mean(acc5)
                test_info[0].append(loss)
                test_info[1].append(acc1)
                test_info[2].append(acc5)
                if test_batch_id % 10 == 0:
                    print("Pass {0},testbatch {1},loss {2}, \
                        acc1 {3},acc5 {4},time {5}"
                          .format(pass_id, test_batch_id, loss, acc1, acc5,
                                  "%2.2f sec" % period))
                    sys.stdout.flush()
                test_batch_id += 1
        except fluid.core.EOFException:
            test_py_reader.reset()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()
377

378
        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, "
R
ruri 已提交
379 380 381
              "test_loss {4}, test_acc1 {5}, test_acc5 {6}".format(
                  pass_id, train_loss, train_acc1, train_acc5, test_loss,
                  test_acc1, test_acc5))
382 383
        sys.stdout.flush()

384
        model_path = os.path.join(model_save_dir + '/' + model_name,
385
                                  str(pass_id))
386 387
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
R
ruri 已提交
388
        fluid.io.save_persistables(exe, model_path, main_program=train_prog)
389

390 391
        # This is for continuous evaluation only
        if args.enable_ce and pass_id == args.num_epochs - 1:
R
ruri 已提交
392
            if device_num == 1:
D
Dang Qingqing 已提交
393
                # Use the mean cost/acc for training
394 395 396 397 398 399 400 401 402
                print("kpis	train_cost	%s" % train_loss)
                print("kpis	train_acc_top1	%s" % train_acc1)
                print("kpis	train_acc_top5	%s" % train_acc5)
                # Use the mean cost/acc for testing
                print("kpis	test_cost	%s" % test_loss)
                print("kpis	test_acc_top1	%s" % test_acc1)
                print("kpis	test_acc_top5	%s" % test_acc5)
                print("kpis	train_speed	%s" % train_speed)
            else:
D
Dang Qingqing 已提交
403
                # Use the mean cost/acc for training
R
ruri 已提交
404 405 406 407 408
                print("kpis	train_cost_card%s	%s" % (device_num, train_loss))
                print("kpis	train_acc_top1_card%s	%s" %
                      (device_num, train_acc1))
                print("kpis	train_acc_top5_card%s	%s" %
                      (device_num, train_acc5))
409
                # Use the mean cost/acc for testing
R
ruri 已提交
410 411 412 413
                print("kpis	test_cost_card%s	%s" % (device_num, test_loss))
                print("kpis	test_acc_top1_card%s	%s" % (device_num, test_acc1))
                print("kpis	test_acc_top5_card%s	%s" % (device_num, test_acc5))
                print("kpis	train_speed_card%s	%s" % (device_num, train_speed))
414

415

416
def main():
417
    args = parser.parse_args()
R
root 已提交
418
    set_models(args.model_category)
419
    print_arguments(args)
420
    train(args)
421

422 423 424

if __name__ == '__main__':
    main()