preprocess.py 7.8 KB
Newer Older
Q
qiuxuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
###############################################################################
# ==============================================================================
# Copyright 2017 Baidu.com, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This module finds the most related paragraph of each document according to recall.
"""

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
import json
from collections import Counter


def precision_recall_f1(prediction, ground_truth):
    """
    This function calculates and returns the precision, recall and f1-score
    Args:
        prediction: prediction string or list to be matched
        ground_truth: golden string or list reference
    Returns:
        floats of (p, r, f1)
    Raises:
        None
    """
    if not isinstance(prediction, list):
        prediction_tokens = prediction.split()
    else:
        prediction_tokens = prediction
    if not isinstance(ground_truth, list):
        ground_truth_tokens = ground_truth.split()
    else:
        ground_truth_tokens = ground_truth
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0, 0, 0
    p = 1.0 * num_same / len(prediction_tokens)
    r = 1.0 * num_same / len(ground_truth_tokens)
    f1 = (2 * p * r) / (p + r)
    return p, r, f1


def recall(prediction, ground_truth):
    """
    This function calculates and returns the recall
    Args:
        prediction: prediction string or list to be matched
        ground_truth: golden string or list reference
    Returns:
        floats of recall
    Raises:
        None
    """
    return precision_recall_f1(prediction, ground_truth)[1]


def f1_score(prediction, ground_truth):
    """
    This function calculates and returns the f1-score
    Args:
        prediction: prediction string or list to be matched
        ground_truth: golden string or list reference
    Returns:
        floats of f1
    Raises:
        None
    """
    return precision_recall_f1(prediction, ground_truth)[2]


def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    """
    This function calculates and returns the precision, recall and f1-score
    Args:
        metric_fn: metric function pointer which calculates scores according to corresponding logic.
        prediction: prediction string or list to be matched
        ground_truth: golden string or list reference
    Returns:
        floats of (p, r, f1)
    Raises:
        None
    """
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)


def find_best_question_match(doc, question, with_score=False):
    """
    For each docment, find the paragraph that matches best to the question.
    Args:
        doc: The document object.
        question: The question tokens.
        with_score: If True then the match score will be returned,
            otherwise False.
    Returns:
        The index of the best match paragraph, if with_score=False,
        otherwise returns a tuple of the index of the best match paragraph
        and the match score of that paragraph.
    """
    most_related_para = -1
    max_related_score = 0
    most_related_para_len = 0
    for p_idx, para_tokens in enumerate(doc['segmented_paragraphs']):
        if len(question) > 0:
            related_score = metric_max_over_ground_truths(recall, para_tokens,
                                                          question)
        else:
            related_score = 0

        if related_score > max_related_score \
                or (related_score == max_related_score \
                and len(para_tokens) < most_related_para_len):
            most_related_para = p_idx
            max_related_score = related_score
            most_related_para_len = len(para_tokens)
    if most_related_para == -1:
        most_related_para = 0
    if with_score:
        return most_related_para, max_related_score
    return most_related_para


def find_fake_answer(sample):
    """
    For each document, finds the most related paragraph based on recall,
    then finds a span that maximize the f1_score compared with the gold answers
    and uses this span as a fake answer span
    Args:
        sample: a sample in the dataset
    Returns:
        None
    Raises:
        None
    """
    for doc in sample['documents']:
        most_related_para = -1
        most_related_para_len = 999999
        max_related_score = 0
        for p_idx, para_tokens in enumerate(doc['segmented_paragraphs']):
            if len(sample['segmented_answers']) > 0:
                related_score = metric_max_over_ground_truths(
                    recall, para_tokens, sample['segmented_answers'])
            else:
                continue
            if related_score > max_related_score \
                    or (related_score == max_related_score
                        and len(para_tokens) < most_related_para_len):
                most_related_para = p_idx
                most_related_para_len = len(para_tokens)
                max_related_score = related_score
        doc['most_related_para'] = most_related_para

    sample['answer_docs'] = []
    sample['answer_spans'] = []
    sample['fake_answers'] = []
    sample['match_scores'] = []

    best_match_score = 0
    best_match_d_idx, best_match_span = -1, [-1, -1]
    best_fake_answer = None
    answer_tokens = set()
    for segmented_answer in sample['segmented_answers']:
        answer_tokens = answer_tokens | set(
            [token for token in segmented_answer])
    for d_idx, doc in enumerate(sample['documents']):
        if not doc['is_selected']:
            continue
        if doc['most_related_para'] == -1:
            doc['most_related_para'] = 0
        most_related_para_tokens = doc['segmented_paragraphs'][doc[
            'most_related_para']][:1000]
        for start_tidx in range(len(most_related_para_tokens)):
            if most_related_para_tokens[start_tidx] not in answer_tokens:
                continue
            for end_tidx in range(
                    len(most_related_para_tokens) - 1, start_tidx - 1, -1):
                span_tokens = most_related_para_tokens[start_tidx:end_tidx + 1]
                if len(sample['segmented_answers']) > 0:
                    match_score = metric_max_over_ground_truths(
                        f1_score, span_tokens, sample['segmented_answers'])
                else:
                    match_score = 0
                if match_score == 0:
                    break
                if match_score > best_match_score:
                    best_match_d_idx = d_idx
                    best_match_span = [start_tidx, end_tidx]
                    best_match_score = match_score
                    best_fake_answer = ''.join(span_tokens)
    if best_match_score > 0:
        sample['answer_docs'].append(best_match_d_idx)
        sample['answer_spans'].append(best_match_span)
        sample['fake_answers'].append(best_fake_answer)
        sample['match_scores'].append(best_match_score)


if __name__ == '__main__':
    for line in sys.stdin:
        sample = json.loads(line)
        find_fake_answer(sample)
        print(json.dumps(sample, encoding='utf8', ensure_ascii=False))