mobilenet_v2.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
import time
import sys
import sys
import numpy as np
import argparse
import ast
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
C
chajchaj 已提交
28
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
29 30 31 32 33 34 35 36 37 38
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework

import math
import sys


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
C
chajchaj 已提交
39
                 num_channels,
40 41 42 43 44 45 46
                 filter_size,
                 num_filters,
                 stride,
                 padding,
                 channels=None,
                 num_groups=1,
                 use_cudnn=True):
C
chajchaj 已提交
47
        super(ConvBNLayer, self).__init__()
48

C
chajchaj 已提交
49
        tmp_param = ParamAttr(name=self.full_name() + "_weights")
50
        self._conv = Conv2D(
C
chajchaj 已提交
51
            num_channels=num_channels,
52 53 54 55 56 57 58 59 60 61 62 63
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=tmp_param,
            bias_attr=False)

        self._batch_norm = BatchNorm(
            num_filters,
C
chajchaj 已提交
64 65 66 67
            param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
            bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
            moving_mean_name=self.full_name() + "_bn" + '_mean',
            moving_variance_name=self.full_name() + "_bn" + '_variance')
68 69 70 71 72 73 74 75 76 77

    def forward(self, inputs, if_act=True):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        if if_act:
            y = fluid.layers.relu6(y)
        return y


class InvertedResidualUnit(fluid.dygraph.Layer):
C
chajchaj 已提交
78 79 80 81 82 83 84 85 86 87
    def __init__(
            self,
            num_channels,
            num_in_filter,
            num_filters,
            stride,
            filter_size,
            padding,
            expansion_factor, ):
        super(InvertedResidualUnit, self).__init__()
88 89
        num_expfilter = int(round(num_in_filter * expansion_factor))
        self._expand_conv = ConvBNLayer(
C
chajchaj 已提交
90
            num_channels=num_channels,
91 92 93 94 95 96 97
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1)

        self._bottleneck_conv = ConvBNLayer(
C
chajchaj 已提交
98
            num_channels=num_expfilter,
99 100 101 102 103 104 105 106
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            num_groups=num_expfilter,
            use_cudnn=False)

        self._linear_conv = ConvBNLayer(
C
chajchaj 已提交
107
            num_channels=num_expfilter,
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1)

    def forward(self, inputs, ifshortcut):
        y = self._expand_conv(inputs, if_act=True)
        y = self._bottleneck_conv(y, if_act=True)
        y = self._linear_conv(y, if_act=False)
        if ifshortcut:
            y = fluid.layers.elementwise_add(inputs, y)
        return y


class InvresiBlocks(fluid.dygraph.Layer):
C
chajchaj 已提交
124 125
    def __init__(self, in_c, t, c, n, s):
        super(InvresiBlocks, self).__init__()
126 127

        self._first_block = InvertedResidualUnit(
C
chajchaj 已提交
128
            num_channels=in_c,
129 130 131 132 133 134 135 136 137 138 139
            num_in_filter=in_c,
            num_filters=c,
            stride=s,
            filter_size=3,
            padding=1,
            expansion_factor=t)

        self._inv_blocks = []
        for i in range(1, n):
            tmp = self.add_sublayer(
                sublayer=InvertedResidualUnit(
C
chajchaj 已提交
140
                    num_channels=c,
141 142 143 144 145 146
                    num_in_filter=c,
                    num_filters=c,
                    stride=1,
                    filter_size=3,
                    padding=1,
                    expansion_factor=t),
C
chajchaj 已提交
147
                name=self.full_name() + "_" + str(i + 1))
148 149 150 151 152 153 154 155 156 157
            self._inv_blocks.append(tmp)

    def forward(self, inputs):
        y = self._first_block(inputs, ifshortcut=False)
        for inv_block in self._inv_blocks:
            y = inv_block(y, ifshortcut=True)
        return y


class MobileNetV2(fluid.dygraph.Layer):
C
chajchaj 已提交
158 159
    def __init__(self, class_dim=1000, scale=1.0):
        super(MobileNetV2, self).__init__()
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        self.scale = scale
        self.class_dim = class_dim

        bottleneck_params_list = [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 3, 2),
            (6, 64, 4, 2),
            (6, 96, 3, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ]

        #1. conv1 
        self._conv1 = ConvBNLayer(
C
chajchaj 已提交
175
            num_channels=3,
176 177 178 179 180 181 182 183 184 185 186 187 188 189
            num_filters=int(32 * scale),
            filter_size=3,
            stride=2,
            padding=1)

        #2. bottleneck sequences
        self._invl = []
        i = 1
        in_c = int(32 * scale)
        for layer_setting in bottleneck_params_list:
            t, c, n, s = layer_setting
            i += 1
            tmp = self.add_sublayer(
                sublayer=InvresiBlocks(
C
chajchaj 已提交
190
                    in_c=in_c, t=t, c=int(c * scale), n=n, s=s),
191 192 193 194 195
                name='conv' + str(i))
            self._invl.append(tmp)
            in_c = int(c * scale)

        #3. last_conv
C
chajchaj 已提交
196
        self._out_c = int(1280 * scale) if scale > 1.0 else 1280
197
        self._conv9 = ConvBNLayer(
C
chajchaj 已提交
198 199
            num_channels=in_c,
            num_filters=self._out_c,
200 201 202 203 204
            filter_size=1,
            stride=1,
            padding=0)

        #4. pool
C
chajchaj 已提交
205
        self._pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
206 207

        #5. fc
C
chajchaj 已提交
208 209 210 211 212 213
        tmp_param = ParamAttr(name=self.full_name() + "fc10_weights")
        self._fc = Linear(
            self._out_c,
            class_dim,
            param_attr=tmp_param,
            bias_attr=ParamAttr(name="fc10_offset"))
214 215 216 217 218 219 220

    def forward(self, inputs):
        y = self._conv1(inputs, if_act=True)
        for inv in self._invl:
            y = inv(y)
        y = self._conv9(y, if_act=True)
        y = self._pool2d_avg(y)
C
chajchaj 已提交
221
        y = fluid.layers.reshape(y, shape=[-1, self._out_c])
222 223
        y = self._fc(y)
        return y