nonlocal.txt 1.7 KB
Newer Older
S
SunGaofeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[MODEL]
name = "NONLOCAL"
num_classes = 400
image_mean = 114.75
image_std = 57.375
depth = 50
dataset = 'kinetics400'
video_arc_choice = 1
use_affine = False
fc_init_std = 0.01
bn_momentum = 0.9
bn_epsilon = 1.0e-5
bn_init_gamma = 0.

[RESNETS]
num_groups = 1
width_per_group = 64
trans_func =  bottleneck_transformation_3d

[NONLOCAL]
bn_momentum = 0.9
bn_epsilon = 1.0e-5
bn_init_gamma = 0.0
layer_mod = 2
conv3_nonlocal = True
conv4_nonlocal = True
conv_init_std = 0.01
no_bias = 0
use_maxpool = True
use_softmax = True
use_scale = True
use_zero_init_conv = False
use_bn = True
use_affine = False

[TRAIN]
37
epoch = 120
S
SunGaofeng 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
num_reader_threads = 8
batch_size = 64
num_gpus = 8
filelist = './dataset/nonlocal/trainlist.txt'
crop_size = 224
sample_rate = 8
video_length = 8
jitter_scales = [256, 320]

dropout_rate = 0.5

learning_rate = 0.01
learning_rate_decay = 0.1
step_sizes = [150000, 150000, 100000]
max_iter = 400000

weight_decay = 0.0001
weight_decay_bn = 0.0
momentum = 0.9
nesterov = True
scale_momentum = True

[VALID]
num_reader_threads = 8
batch_size = 64
filelist = './dataset/nonlocal/vallist.txt'
crop_size = 224
sample_rate = 8
video_length = 8
jitter_scales = [256, 320]

[TEST]
num_reader_threads = 8
batch_size = 4
filelist = 'dataset/nonlocal/testlist.txt'
filename_gt = 'dataset/nonlocal/vallist.txt'
checkpoint_dir = './output'
crop_size = 256
sample_rate = 8
video_length = 8
jitter_scales = [256, 256]
num_test_clips = 30
dataset_size = 19761
use_multi_crop = 1

[INFER]
num_reader_threads = 8
batch_size = 1
S
SunGaofeng 已提交
86
filelist = 'dataset/nonlocal/inferlist.txt'
S
SunGaofeng 已提交
87 88 89 90 91 92 93
crop_size = 256
sample_rate = 8
video_length = 8
jitter_scales = [256, 256]
num_test_clips = 30
use_multi_crop = 1