run_duie.py 14.7 KB
Newer Older
K
kgresearch 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import os
import time
import six
import logging
import multiprocessing
from io import open
import numpy as np
import json
# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
# not take any effect.
os.environ['FLAGS_eager_delete_tensor_gb'] = '0'  # enable gc

import codecs
import paddle.fluid as fluid

import reader.task_reader as task_reader
from model.ernie import ErnieConfig
from optimization import optimization
from utils.init import init_pretraining_params, init_checkpoint
from utils.args import print_arguments, check_cuda, prepare_logger
from finetune.relation_extraction_multi_cls import create_model, evaluate, predict, calculate_acc
from finetune_args import parser

args = parser.parse_args()
log = logging.getLogger()


def main(args):
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        dev_list = fluid.cuda_places()
        place = dev_list[0]
        dev_count = len(dev_list)
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    reader = task_reader.RelationExtractionMultiCLSReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        spo_label_map_config=args.spo_label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        in_tokens=args.in_tokens,
        random_seed=args.random_seed,
        task_id=args.task_id,
        num_labels=args.num_labels)

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        if args.in_tokens:
            if args.batch_size < args.max_seq_len:
                raise ValueError(
                    'if in_tokens=True, batch_size should greater than max_sqelen, got batch_size:%d seqlen:%d'
                    % (args.batch_size, args.max_seq_len))

            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            '''
            if args.max_steps != 0:
                max_train_steps = min(args.epoch * num_train_examples // args.batch_size // dev_count, args.max_steps)
            else:
                max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count
                '''
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        log.info("Device count: %d" % dev_count)
        log.info("Num train examples: %d" % num_train_examples)
        log.info("Max train steps: %d" % max_train_steps)
        log.info("Num warmup steps: %d" % warmup_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='train_reader',
                    ernie_config=ernie_config)
                scheduled_lr, loss_scaling = optimization(
                    loss=graph_vars["loss"],
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    use_dynamic_loss_scaling=args.use_dynamic_loss_scaling,
                    init_loss_scaling=args.init_loss_scaling,
                    incr_every_n_steps=args.incr_every_n_steps,
                    decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf,
                    incr_ratio=args.incr_ratio,
                    decr_ratio=args.decr_ratio)

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            log.info("Theoretical memory usage in training: %.3f - %.3f %s" %
                     (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, graph_vars = create_model(
                    args,
                    pyreader_name='test_reader',
                    ernie_config=ernie_config)

        test_prog = test_prog.clone(for_test=True)

    nccl2_num_trainers = 1
    nccl2_trainer_id = 0
    if args.is_distributed:
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        worker_endpoints_env = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
        worker_endpoints = worker_endpoints_env.split(",")
        trainers_num = len(worker_endpoints)

        log.info("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
              trainer_id:{}".format(worker_endpoints, trainers_num,
                                    current_endpoint, trainer_id))

        # prepare nccl2 env.
        config = fluid.DistributeTranspilerConfig()
        config.mode = "nccl2"
        t = fluid.DistributeTranspiler(config=config)
        t.transpile(
            trainer_id,
            trainers=worker_endpoints_env,
            current_endpoint=current_endpoint,
            program=train_program if args.do_train else test_prog,
            startup_program=startup_prog)
        nccl2_num_trainers = trainers_num
        nccl2_trainer_id = trainer_id

    exe = fluid.Executor(place)
    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            log.info(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        if args.use_fast_executor:
            exec_strategy.use_experimental_executor = True
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope

        train_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            loss_name=graph_vars["loss"].name,
            exec_strategy=exec_strategy,
            main_program=train_program,
            num_trainers=nccl2_num_trainers,
            trainer_id=nccl2_trainer_id)

        train_pyreader.decorate_tensor_provider(train_data_generator)
    else:
        train_exe = None

    if args.do_val or args.do_test:
        test_exe = fluid.ParallelExecutor(
            use_cuda=args.use_cuda,
            main_program=test_prog,
            share_vars_from=train_exe)

    if args.do_train:
        train_pyreader.start()
        steps = 0
        graph_vars["learning_rate"] = scheduled_lr

        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps != 0:
                    train_exe.run(fetch_list=[])
                else:
                    fetch_list = [
                        graph_vars["lod_logit"].name,
                        graph_vars["lod_label"].name, graph_vars["loss"].name,
                        graph_vars['learning_rate'].name
                    ]

                    out = train_exe.run(fetch_list=fetch_list,
                                        return_numpy=False)
                    logits, labels, loss_lod, lr_lod = out
                    lr = np.array(lr_lod)[0]
                    loss = np.array(loss_lod).mean()
                    correct_, num_, token_correct_, token_total_ = calculate_acc(
                        logits, labels)
                    accuracy = correct_ / num_
                    accuracy_token = token_correct_ / token_total_

                    if args.verbose:
                        log.info(
                            "train pyreader queue size: %d, learning rate: %f" %
                            (train_pyreader.queue.size(), lr
                             if warmup_steps > 0 else args.learning_rate))

                    current_example, current_epoch = reader.get_train_progress()
                    time_end = time.time()
                    used_time = time_end - time_begin
                    log.info(
                        "epoch: %d, progress: %d/%d, step: %d, loss: %f, "
                        "accuracy: %f, accuracy_token: %f, speed: %f steps/s" %
                        (current_epoch, current_example, num_train_examples,
                         steps, loss, accuracy, accuracy_token,
                         args.skip_steps / used_time))
                    time_begin = time.time()

                if nccl2_trainer_id == 0 and steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if nccl2_trainer_id == 0 and steps % args.validation_steps == 0:
                    # evaluate dev set
                    if args.do_val:
                        evaluate_wrapper(reader, exe, test_prog, test_pyreader,
                                         graph_vars, current_epoch, steps)
                    # evaluate test set
                    if args.do_test:
                        predict_wrapper(reader, exe, test_prog, test_pyreader,
                                        graph_vars, current_epoch, steps)

            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # final eval on dev set
    if nccl2_trainer_id == 0 and args.do_val:
        evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                         'final', 'final')

    if nccl2_trainer_id == 0 and args.do_test:
        predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars,
                        'final', 'final')


def evaluate_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, epoch,
                     steps):
    # evaluate dev set
    batch_size = args.batch_size if args.predict_batch_size is None else args.predict_batch_size
    for ds in args.dev_set.split(','):  # single card eval
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
                ds, batch_size=batch_size, epoch=1, dev_count=1, shuffle=False))
        examples = reader._read_json(ds)
        log.info("validation result of dataset {}:".format(ds))
        info = evaluate(args, examples, exe, test_prog, test_pyreader,
                        graph_vars)
        log.info(info + ', file: {}, epoch: {}, steps: {}'.format(ds, epoch,
                                                                  steps))


def predict_wrapper(reader, exe, test_prog, test_pyreader, graph_vars, epoch,
                    steps):

    test_sets = args.test_set.split(',')
    save_dirs = args.test_save.split(',')
    assert len(test_sets) == len(
        save_dirs), 'number of test_sets & test_save not match, got %d vs %d' % (
            len(test_sets), len(save_dirs))

    batch_size = args.batch_size if args.predict_batch_size is None else args.predict_batch_size
    for test_f, save_f in zip(test_sets, save_dirs):
        test_pyreader.decorate_tensor_provider(
            reader.data_generator(
                test_f,
                batch_size=batch_size,
                epoch=1,
                dev_count=1,
                shuffle=False))
        examples = reader._read_json(test_f)
        save_path = save_f
        log.info("testing {}, save to {}".format(test_f, save_path))
        res = predict(args, examples, exe, test_prog, test_pyreader, graph_vars)
        save_dir = os.path.dirname(save_path)
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        with codecs.open(save_path, 'w', 'utf-8') as f:
            for result in res:
                json_str = json.dumps(result, ensure_ascii=False)
                f.write(json_str)
                f.write('\n')


if __name__ == '__main__':
    prepare_logger(log)
    print_arguments(args)
    check_cuda(args.use_cuda)
    main(args)