train.py 5.7 KB
Newer Older
1
"""Trainer for DeepSpeech2 model."""
2 3 4 5
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

6
import argparse
7
import distutils.util
8
import multiprocessing
9
import paddle.v2 as paddle
10
from model import DeepSpeech2Model
11
from data_utils.data import DataGenerator
12
import utils
X
Xinghai Sun 已提交
13

14
parser = argparse.ArgumentParser(description=__doc__)
15
parser.add_argument(
16
    "--batch_size", default=256, type=int, help="Minibatch size.")
17
parser.add_argument(
18
    "--num_passes",
19
    default=200,
20 21
    type=int,
    help="Training pass number. (default: %(default)s)")
22 23 24 25 26 27
parser.add_argument(
    "--num_iterations_print",
    default=100,
    type=int,
    help="Number of iterations for every train cost printing. "
    "(default: %(default)s)")
28
parser.add_argument(
29 30 31 32
    "--num_conv_layers",
    default=2,
    type=int,
    help="Convolution layer number. (default: %(default)s)")
33
parser.add_argument(
34 35 36 37
    "--num_rnn_layers",
    default=3,
    type=int,
    help="RNN layer number. (default: %(default)s)")
38
parser.add_argument(
39 40 41 42
    "--rnn_layer_size",
    default=512,
    type=int,
    help="RNN layer cell number. (default: %(default)s)")
43
parser.add_argument(
44 45 46 47
    "--adam_learning_rate",
    default=5e-4,
    type=float,
    help="Learning rate for ADAM Optimizer. (default: %(default)s)")
48
parser.add_argument(
49 50 51 52
    "--use_gpu",
    default=True,
    type=distutils.util.strtobool,
    help="Use gpu or not. (default: %(default)s)")
53
parser.add_argument(
54
    "--use_sortagrad",
55
    default=True,
56 57
    type=distutils.util.strtobool,
    help="Use sortagrad or not. (default: %(default)s)")
Y
Yibing Liu 已提交
58 59 60 61 62 63
parser.add_argument(
    "--specgram_type",
    default='linear',
    type=str,
    help="Feature type of audio data: 'linear' (power spectrum)"
    " or 'mfcc'. (default: %(default)s)")
64 65
parser.add_argument(
    "--max_duration",
66
    default=27.0,
67 68 69 70 71 72 73 74 75
    type=float,
    help="Audios with duration larger than this will be discarded. "
    "(default: %(default)s)")
parser.add_argument(
    "--min_duration",
    default=0.0,
    type=float,
    help="Audios with duration smaller than this will be discarded. "
    "(default: %(default)s)")
76 77
parser.add_argument(
    "--shuffle_method",
78
    default='batch_shuffle_clipped',
79 80 81
    type=str,
    help="Shuffle method: 'instance_shuffle', 'batch_shuffle', "
    "'batch_shuffle_batch'. (default: %(default)s)")
82 83
parser.add_argument(
    "--trainer_count",
84
    default=8,
85 86
    type=int,
    help="Trainer number. (default: %(default)s)")
87 88
parser.add_argument(
    "--num_threads_data",
89
    default=multiprocessing.cpu_count(),
90 91
    type=int,
    help="Number of cpu threads for preprocessing data. (default: %(default)s)")
92
parser.add_argument(
93 94
    "--mean_std_filepath",
    default='mean_std.npz',
95 96 97 98
    type=str,
    help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
    "--train_manifest_path",
99
    default='datasets/manifest.train',
100 101 102 103
    type=str,
    help="Manifest path for training. (default: %(default)s)")
parser.add_argument(
    "--dev_manifest_path",
104
    default='datasets/manifest.dev',
105 106
    type=str,
    help="Manifest path for validation. (default: %(default)s)")
107 108
parser.add_argument(
    "--vocab_filepath",
109
    default='datasets/vocab/eng_vocab.txt',
110 111
    type=str,
    help="Vocabulary filepath. (default: %(default)s)")
112 113
parser.add_argument(
    "--init_model_path",
Y
yangyaming 已提交
114
    default=None,
115
    type=str,
Y
yangyaming 已提交
116 117 118
    help="If set None, the training will start from scratch. "
    "Otherwise, the training will resume from "
    "the existing model of this path. (default: %(default)s)")
119 120
parser.add_argument(
    "--augmentation_config",
121 122 123
    default='[{"type": "shift", '
    '"params": {"min_shift_ms": -5, "max_shift_ms": 5},'
    '"prob": 1.0}]',
124 125 126
    type=str,
    help="Augmentation configuration in json-format. "
    "(default: %(default)s)")
127 128 129 130
args = parser.parse_args()


def train():
131
    """DeepSpeech2 training."""
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    train_generator = DataGenerator(
        vocab_filepath=args.vocab_filepath,
        mean_std_filepath=args.mean_std_filepath,
        augmentation_config=args.augmentation_config,
        max_duration=args.max_duration,
        min_duration=args.min_duration,
        specgram_type=args.specgram_type,
        num_threads=args.num_threads_data)
    dev_generator = DataGenerator(
        vocab_filepath=args.vocab_filepath,
        mean_std_filepath=args.mean_std_filepath,
        augmentation_config="{}",
        specgram_type=args.specgram_type,
        num_threads=args.num_threads_data)
146
    train_batch_reader = train_generator.batch_reader_creator(
147
        manifest_path=args.train_manifest_path,
148
        batch_size=args.batch_size,
149
        min_batch_size=args.trainer_count,
150
        sortagrad=args.use_sortagrad if args.init_model_path is None else False,
151
        shuffle_method=args.shuffle_method)
152
    dev_batch_reader = dev_generator.batch_reader_creator(
153
        manifest_path=args.dev_manifest_path,
154
        batch_size=args.batch_size,
155
        min_batch_size=1,  # must be 1, but will have errors.
156
        sortagrad=False,
157
        shuffle_method=None)
158

159 160 161 162 163 164 165 166 167 168 169 170
    ds2_model = DeepSpeech2Model(
        vocab_size=train_generator.vocab_size,
        num_conv_layers=args.num_conv_layers,
        num_rnn_layers=args.num_rnn_layers,
        rnn_layer_size=args.rnn_layer_size,
        pretrained_model_path=args.init_model_path)
    ds2_model.train(
        train_batch_reader=train_batch_reader,
        dev_batch_reader=dev_batch_reader,
        feeding_dict=train_generator.feeding,
        learning_rate=args.adam_learning_rate,
        gradient_clipping=400,
171
        num_passes=args.num_passes,
172
        num_iterations_print=args.num_iterations_print)
173 174 175


def main():
176
    utils.print_arguments(args)
177
    paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
178 179 180 181 182
    train()


if __name__ == '__main__':
    main()