augmentation.py 4.2 KB
Newer Older
K
KP 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle

from ..backends import depth_convert
from .utils import randint, weighted_sampling

__all__ = ['depth_augment', 'spect_augment', 'random_crop1d', 'random_crop2d']


# example y = depth_augment(y,['int8','int16'],[0.8,0.1])
def depth_augment(y, choices=['int8', 'int16'], probs=[0.5, 0.5]):
    assert len(probs) == len(choices), 'number of choices {} must be equal to size of probs {}'.format(
        len(choices), len(probs))
    k = weighted_sampling(probs)
    #k = randint(len(choices))
    src_depth = y.dtype
    y1 = depth_convert(y, choices[k])
    y2 = depth_convert(y1, src_depth)
    return y2


def adaptive_spect_augment(spect, tempo_axis=0, level=0.1):

    assert spect.ndim == 2., 'only supports 2d tensor or numpy array'
    if tempo_axis == 0:
        nt, nf = spect.shape
    else:
        nf, nt = spect.shape

    time_mask_width = int(nt * level * 0.5)
    freq_mask_width = int(nf * level * 0.5)

    num_time_mask = int(10 * level)
    num_freq_mask = int(10 * level)

    # num_zeros = num_time_mask*time_mask_width*nf + num_freq_mask*freq_mask_width*nt
    # factor = (nt*nf)/(nt*nf-num_zeros)

    if tempo_axis == 0:
        for i in range(num_time_mask):
            start = randint(nt - time_mask_width)
            spect[start:start + time_mask_width, :] = 0
        for i in range(num_freq_mask):
            start = randint(nf - freq_mask_width)
            spect[:, start:start + freq_mask_width] = 0
    else:
        for i in range(num_time_mask):
            start = randint(nt - time_mask_width)
            spect[:, start:start + time_mask_width] = 0
        for i in range(num_freq_mask):
            start = randint(nf - freq_mask_width)
            spect[start:start + freq_mask_width, :] = 0

    return spect


def spect_augment(
    spect,
    tempo_axis=0,
    max_time_mask=3,
    max_freq_mask=3,
    max_time_mask_width=30,
    max_freq_mask_width=20,
):

    assert spect.ndim == 2., 'only supports 2d tensor or numpy array'
    if tempo_axis == 0:
        nt, nf = spect.shape
    else:
        nf, nt = spect.shape

    num_time_mask = randint(max_time_mask)
    num_freq_mask = randint(max_freq_mask)

    time_mask_width = randint(max_time_mask_width)
    freq_mask_width = randint(max_freq_mask_width)

    #print(num_time_mask)
    #print(num_freq_mask)

    if tempo_axis == 0:
        for i in range(num_time_mask):
            start = randint(nt - time_mask_width)
            spect[start:start + time_mask_width, :] = 0
        for i in range(num_freq_mask):
            start = randint(nf - freq_mask_width)
            spect[:, start:start + freq_mask_width] = 0
    else:
        for i in range(num_time_mask):
            start = randint(nt - time_mask_width)
            spect[:, start:start + time_mask_width] = 0
        for i in range(num_freq_mask):
            start = randint(nf - freq_mask_width)
            spect[start:start + freq_mask_width, :] = 0

    return spect


def random_crop1d(y, crop_len):
    assert y.ndim == 1, 'only accept 1d tensor or numpy array'
    n = len(y)
    idx = randint(n - crop_len)
    return y[idx:idx + crop_len]


def random_crop2d(s, crop_len, tempo_axis=0):  # random crop according to temporal direction
    assert tempo_axis < s.ndim, 'axis out of range'
    n = s.shape[tempo_axis]
    idx = randint(high=n - crop_len)
    if type(s) == np.ndarray:
        sli = [slice(None) for i in range(s.ndim)]
        sli[tempo_axis] = slice(idx, idx + crop_len)
        out = s[tuple(sli)]
    else:
        out = paddle.index_select(s, paddle.Tensor(np.array([i for i in range(idx, idx + crop_len)])), axis=tempo_axis)
    return out