layers.py 5.4 KB
Newer Older
W
whs 已提交
1 2 3
from __future__ import division
import paddle.fluid as fluid
import numpy as np
W
whs 已提交
4
import os
W
whs 已提交
5

W
whs 已提交
6 7
# cudnn is not better when batch size is 1.
use_cudnn = False
W
whs 已提交
8 9
if 'ce_mode' in os.environ:
    use_cudnn = False
W
whs 已提交
10

W
whs 已提交
11

W
whs 已提交
12 13 14 15 16 17 18 19 20 21 22
def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    valid_filter_size = dilation * (filter_size - 1) + 1
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


def instance_norm(input, name=None):
W
whs 已提交
23 24
    # TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm.
    # return fluid.layers.layer_norm(input, begin_norm_axis=2) 
W
whs 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    helper = fluid.layer_helper.LayerHelper("instance_norm", **locals())
    dtype = helper.input_dtype()
    epsilon = 1e-5
    mean = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True)
    var = fluid.layers.reduce_mean(
        fluid.layers.square(input - mean), dim=[2, 3], keep_dim=True)
    if name is not None:
        scale_name = name + "_scale"
        offset_name = name + "_offset"
    scale_param = fluid.ParamAttr(
        name=scale_name,
        initializer=fluid.initializer.TruncatedNormal(1.0, 0.02),
        trainable=True)
    offset_param = fluid.ParamAttr(
        name=offset_name,
        initializer=fluid.initializer.Constant(0.0),
        trainable=True)
    scale = helper.create_parameter(
        attr=scale_param, shape=input.shape[1:2], dtype=dtype)
    offset = helper.create_parameter(
        attr=offset_param, shape=input.shape[1:2], dtype=dtype)

    tmp = fluid.layers.elementwise_mul(x=(input - mean), y=scale, axis=1)
    tmp = tmp / fluid.layers.sqrt(var + epsilon)
    tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
    return tmp


def conv2d(input,
           num_filters=64,
           filter_size=7,
           stride=1,
           stddev=0.02,
           padding="VALID",
           name="conv2d",
           norm=True,
           relu=True,
           relufactor=0.0):
    """Wrapper for conv2d op to support VALID and SAME padding mode."""
    need_crop = False
    if padding == "SAME":
        top_padding, bottom_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
        left_padding, right_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
        height_padding = bottom_padding
        width_padding = right_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            height_padding = top_padding + stride
            width_padding = left_padding + stride
            need_crop = True
    else:
        height_padding = 0
        width_padding = 0

    padding = [height_padding, width_padding]
    param_attr = fluid.ParamAttr(
        name=name + "_w",
        initializer=fluid.initializer.TruncatedNormal(scale=stddev))
    bias_attr = fluid.ParamAttr(
        name=name + "_b", initializer=fluid.initializer.Constant(0.0))
    conv = fluid.layers.conv2d(
        input,
        num_filters,
        filter_size,
        name=name,
        stride=stride,
        padding=padding,
W
whs 已提交
93
        use_cudnn=use_cudnn,
W
whs 已提交
94 95 96 97 98 99 100 101 102 103
        param_attr=param_attr,
        bias_attr=bias_attr)
    if need_crop:
        conv = fluid.layers.crop(
            conv,
            shape=(-1, conv.shape[1], conv.shape[2] - 1, conv.shape[3] - 1),
            offsets=(0, 0, 1, 1))
    if norm:
        conv = instance_norm(input=conv, name=name + "_norm")
    if relu:
W
whs 已提交
104
        conv = fluid.layers.leaky_relu(conv, alpha=relufactor)
W
whs 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    return conv


def deconv2d(input,
             out_shape,
             num_filters=64,
             filter_size=7,
             stride=1,
             stddev=0.02,
             padding="VALID",
             name="conv2d",
             norm=True,
             relu=True,
             relufactor=0.0):
    """Wrapper for deconv2d op to support VALID and SAME padding mode."""
    need_crop = False
    if padding == "SAME":
        top_padding, bottom_padding = cal_padding(out_shape[0], stride,
                                                  filter_size)
        left_padding, right_padding = cal_padding(out_shape[1], stride,
                                                  filter_size)
        height_padding = top_padding
        width_padding = left_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            need_crop = True
    else:
        height_padding = 0
        width_padding = 0

    padding = [height_padding, width_padding]

    param_attr = fluid.ParamAttr(
        name=name + "_w",
        initializer=fluid.initializer.TruncatedNormal(scale=stddev))
    bias_attr = fluid.ParamAttr(
        name=name + "_b", initializer=fluid.initializer.Constant(0.0))
    conv = fluid.layers.conv2d_transpose(
        input,
        num_filters,
        name=name,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
W
whs 已提交
148
        use_cudnn=use_cudnn,
W
whs 已提交
149 150 151 152 153 154 155 156 157 158 159
        param_attr=param_attr,
        bias_attr=bias_attr)

    if need_crop:
        conv = fluid.layers.crop(
            conv,
            shape=(-1, conv.shape[1], conv.shape[2] - 1, conv.shape[3] - 1),
            offsets=(0, 0, 0, 0))
    if norm:
        conv = instance_norm(input=conv, name=name + "_norm")
    if relu:
W
whs 已提交
160
        conv = fluid.layers.leaky_relu(conv, alpha=relufactor)
W
whs 已提交
161
    return conv