AttGAN.py 18.2 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lvmengsi 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.AttGAN_network import AttGAN_model
from util import utility
import paddle.fluid as fluid
import sys
import time
import copy
import numpy as np


class GTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = AttGAN_model()
            self.fake_img, self.rec_img = model.network_G(
                image_real, label_org_, label_trg_, cfg, name="generator")
            self.fake_img.persistable = True
            self.rec_img.persistable = True
            self.infer_program = self.program.clone(for_test=True)

            self.g_loss_rec = fluid.layers.mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=image_real, y=self.rec_img)))
            self.pred_fake, self.cls_fake = model.network_D(
                self.fake_img, cfg, name="discriminator")
            #wgan
            if cfg.gan_mode == "wgan":
                self.g_loss_fake = -1 * fluid.layers.mean(self.pred_fake)
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_fake,
                    shape=self.pred_fake.shape,
                    value=1.0,
                    dtype='float32')
                self.g_loss_fake = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_fake, y=ones)))
L
lvmengsi 已提交
58 59 60
            else:
                raise NotImplementedError("gan_mode {} is not support!".format(
                    cfg.gan_mode))
L
lvmengsi 已提交
61 62 63 64 65 66 67 68 69

            self.g_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_fake,
                                                               label_trg))
            self.g_loss = self.g_loss_fake + cfg.lambda_rec * self.g_loss_rec + cfg.lambda_cls * self.g_loss_cls

            self.g_loss_fake.persistable = True
            self.g_loss_rec.persistable = True
            self.g_loss_cls.persistable = True
L
lvmengsi 已提交
70 71 72
            lr = fluid.layers.piecewise_decay(
                boundaries=[99 * step_per_epoch],
                values=[cfg.g_lr, cfg.g_lr * 0.1])
L
lvmengsi 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "generator"):
                    vars.append(var.name)
            self.param = vars
            optimizer = fluid.optimizer.Adam(
                learning_rate=lr, beta1=0.5, beta2=0.999, name="net_G")

            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        lr = cfg.d_lr
        with fluid.program_guard(self.program):
            model = AttGAN_model()
            self.fake_img, _ = model.network_G(
                image_real, label_org, label_trg_, cfg, name="generator")
            self.pred_real, self.cls_real = model.network_D(
                image_real, cfg, name="discriminator")
            self.pred_fake, _ = model.network_D(
                self.fake_img, cfg, name="discriminator")
            self.d_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_real,
                                                               label_org))
            #wgan
            if cfg.gan_mode == "wgan":
                self.d_loss_fake = fluid.layers.reduce_mean(self.pred_fake)
                self.d_loss_real = -1 * fluid.layers.reduce_mean(self.pred_real)
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
L
lvmengsi 已提交
107
                    image_real,
L
lvmengsi 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
                    self.fake_img,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_real,
                    shape=self.pred_real.shape,
                    value=1.0,
                    dtype='float32')
                self.d_loss_real = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_real, y=ones)))
                self.d_loss_fake = fluid.layers.mean(
                    fluid.layers.square(x=self.pred_fake))
L
lvmengsi 已提交
125 126 127 128 129 130 131
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
                    image_real,
                    None,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
L
lvmengsi 已提交
132 133 134
            else:
                raise NotImplementedError("gan_mode {} is not support!".format(
                    cfg.gan_mode))
L
lvmengsi 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147

            self.d_loss_real.persistable = True
            self.d_loss_fake.persistable = True
            self.d_loss.persistable = True
            self.d_loss_cls.persistable = True
            self.d_loss_gp.persistable = True
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "discriminator"):
                    vars.append(var.name)
            self.param = vars

L
lvmengsi 已提交
148 149 150
            lr = fluid.layers.piecewise_decay(
                boundaries=[99 * step_per_epoch],
                values=[cfg.g_lr, cfg.g_lr * 0.1])
L
lvmengsi 已提交
151 152 153 154 155 156 157
            optimizer = fluid.optimizer.Adam(
                learning_rate=lr, beta1=0.5, beta2=0.999, name="net_D")

            optimizer.minimize(self.d_loss, parameter_list=vars)

    def gradient_penalty(self, f, real, fake=None, cfg=None, name=None):
        def _interpolate(a, b=None):
L
lvmengsi 已提交
158
            if b is None:
u010070587's avatar
u010070587 已提交
159 160 161 162 163 164 165
                if cfg.enable_ce:
                    beta = fluid.layers.uniform_random_batch_size_like(
                       input=a, shape=a.shape, min=0.0, max=1.0, seed=1)
                else:
                    beta = fluid.layers.uniform_random_batch_size_like(
                       input=a, shape=a.shape, min=0.0, max=1.0)

L
lvmengsi 已提交
166
                mean = fluid.layers.reduce_mean(
L
lvmengsi 已提交
167
                    a, dim=list(range(len(a.shape))), keep_dim=True)
L
lvmengsi 已提交
168 169 170
                input_sub_mean = fluid.layers.elementwise_sub(a, mean, axis=0)
                var = fluid.layers.reduce_mean(
                    fluid.layers.square(input_sub_mean),
L
lvmengsi 已提交
171
                    dim=list(range(len(a.shape))),
L
lvmengsi 已提交
172 173
                    keep_dim=True)
                b = beta * fluid.layers.sqrt(var) * 0.5 + a
L
lvmengsi 已提交
174
            shape = [a.shape[0]]
u010070587's avatar
u010070587 已提交
175 176 177 178 179 180 181
            if cfg.enable_ce:
               alpha = fluid.layers.uniform_random_batch_size_like(
                 input=a, shape=shape, min=0.0, max=1.0, seed=1)
            else:
               alpha = fluid.layers.uniform_random_batch_size_like(
                 input=a, shape=shape, min=0.0, max=1.0)

L
Lv Mengsi 已提交
182
            inner = fluid.layers.elementwise_mul((b-a), alpha, axis=0) + a
L
lvmengsi 已提交
183 184 185 186 187 188 189 190 191 192 193 194
            return inner

        x = _interpolate(real, fake)

        pred, _ = f(x, cfg=cfg, name=name)
        if isinstance(pred, tuple):
            pred = pred[0]
        vars = []
        for var in fluid.default_main_program().list_vars():
            if fluid.io.is_parameter(var) and var.name.startswith(
                    "discriminator"):
                vars.append(var.name)
L
lvmengsi 已提交
195
        grad = fluid.gradients(pred, x, no_grad_set=vars)[0]
L
lvmengsi 已提交
196 197 198
        grad_shape = grad.shape
        grad = fluid.layers.reshape(
            grad, [-1, grad_shape[1] * grad_shape[2] * grad_shape[3]])
L
lvmengsi 已提交
199
        epsilon = 1e-16
L
lvmengsi 已提交
200 201
        norm = fluid.layers.sqrt(
            fluid.layers.reduce_sum(
L
lvmengsi 已提交
202
                fluid.layers.square(grad), dim=1) + epsilon)
L
lvmengsi 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
        gp = fluid.layers.reduce_mean(fluid.layers.square(norm - 1.0))
        return gp


class AttGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--g_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of generator")
        parser.add_argument(
            '--d_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of discriminator")
        parser.add_argument(
            '--c_dim',
            type=int,
            default=13,
            help="the number of attributes we selected")
        parser.add_argument(
            '--d_fc_dim',
            type=int,
            default=1024,
            help="the base fc dim in discriminator")
        parser.add_argument(
            '--lambda_cls',
            type=float,
            default=10.0,
            help="the coefficient of classification")
        parser.add_argument(
            '--lambda_rec',
            type=float,
            default=100.0,
            help="the coefficient of refactor")
        parser.add_argument(
            '--thres_int',
            type=float,
            default=0.5,
            help="thresh change of attributes")
        parser.add_argument(
            '--lambda_gp',
            type=float,
            default=10.0,
            help="the coefficient of gradient penalty")
        parser.add_argument(
            '--n_samples', type=int, default=16, help="batch size when testing")
        parser.add_argument(
            '--selected_attrs',
            type=str,
            default="Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
            help="the attributes we selected to change")
        parser.add_argument(
            '--n_layers',
            type=int,
            default=5,
            help="default layers in the network")
L
lvmengsi 已提交
261 262 263 264 265 266
        parser.add_argument(
            '--dis_norm',
            type=str,
            default=None,
            help="the normalization in discriminator, choose in [None, instance_norm]"
        )
u010070587's avatar
u010070587 已提交
267 268 269 270
        parser.add_argument(
            '--enable_ce',
            action='store_true',
            help="if set, run the tasks with continuous evaluation logs")
L
lvmengsi 已提交
271 272 273 274 275 276 277

        return parser

    def __init__(self,
                 cfg=None,
                 train_reader=None,
                 test_reader=None,
L
lvmengsi 已提交
278 279
                 batch_num=1,
                 id2name=None):
L
lvmengsi 已提交
280 281 282 283
        self.cfg = cfg
        self.train_reader = train_reader
        self.test_reader = test_reader
        self.batch_num = batch_num
L
lvmengsi 已提交
284
        self.id2name = id2name
L
lvmengsi 已提交
285 286

    def build_model(self):
L
lvmengsi 已提交
287
        data_shape = [None, 3, self.cfg.image_size, self.cfg.image_size]
L
lvmengsi 已提交
288

L
lvmengsi 已提交
289
        image_real = fluid.data(
L
lvmengsi 已提交
290
            name='image_real', shape=data_shape, dtype='float32')
L
lvmengsi 已提交
291 292 293 294 295 296 297 298
        label_org = fluid.data(
            name='label_org', shape=[None, self.cfg.c_dim], dtype='float32')
        label_trg = fluid.data(
            name='label_trg', shape=[None, self.cfg.c_dim], dtype='float32')
        label_org_ = fluid.data(
            name='label_org_', shape=[None, self.cfg.c_dim], dtype='float32')
        label_trg_ = fluid.data(
            name='label_trg_', shape=[None, self.cfg.c_dim], dtype='float32')
u010070587's avatar
u010070587 已提交
299 300 301
        # used for continuous evaluation        
        if self.cfg.enable_ce:
            fluid.default_startup_program().random_seed = 90
L
lvmengsi 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315

        py_reader = fluid.io.PyReader(
            feed_list=[image_real, label_org, label_trg],
            capacity=64,
            iterable=True,
            use_double_buffer=True)

        test_gen_trainer = GTrainer(image_real, label_org, label_org_,
                                    label_trg, label_trg_, self.cfg,
                                    self.batch_num)

        label_org_ = (label_org * 2.0 - 1.0) * self.cfg.thres_int
        label_trg_ = (label_trg * 2.0 - 1.0) * self.cfg.thres_int

L
lvmengsi 已提交
316 317 318 319 320 321 322
        gen_trainer = GTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)
        dis_trainer = DTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
L
lvmengsi 已提交
323 324 325 326
        py_reader.decorate_batch_generator(
            self.train_reader,
            places=fluid.cuda_places()
            if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, dis_trainer, "net_D")

        ### memory optim
        build_strategy = fluid.BuildStrategy()

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        dis_trainer_program = fluid.CompiledProgram(
            dis_trainer.program).with_data_parallel(
                loss_name=dis_trainer.d_loss.name,
                build_strategy=build_strategy)
u010070587's avatar
u010070587 已提交
345 346 347 348 349
        # used for continuous evaluation        
        if self.cfg.enable_ce:
            gen_trainer_program.random_seed = 90
            dis_trainer_program.random_seed = 90
        
L
lvmengsi 已提交
350 351 352 353
        t_time = 0

        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
L
lvmengsi 已提交
354
            for data in py_reader():
L
lvmengsi 已提交
355 356
                s_time = time.time()
                # optimize the discriminator network
L
lvmengsi 已提交
357 358 359 360 361 362 363 364 365 366 367 368
                fetches = [
                    dis_trainer.d_loss.name,
                    dis_trainer.d_loss_real.name,
                    dis_trainer.d_loss_fake.name,
                    dis_trainer.d_loss_cls.name,
                    dis_trainer.d_loss_gp.name,
                ]
                d_loss, d_loss_real, d_loss_fake, d_loss_cls, d_loss_gp = exe.run(
                    dis_trainer_program, fetch_list=fetches, feed=data)

                if (batch_id + 1) % self.cfg.num_discriminator_time == 0:
                    # optimize the generator network
L
lvmengsi 已提交
369 370 371 372 373 374
                    d_fetches = [
                        gen_trainer.g_loss_fake.name,
                        gen_trainer.g_loss_rec.name,
                        gen_trainer.g_loss_cls.name, gen_trainer.fake_img.name
                    ]
                    g_loss_fake, g_loss_rec, g_loss_cls, fake_img = exe.run(
L
lvmengsi 已提交
375
                        gen_trainer_program, fetch_list=d_fetches, feed=data)
L
lvmengsi 已提交
376 377 378 379
                    print("epoch{}: batch{}: \n\
                         g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
                          .format(epoch_id, batch_id, g_loss_fake[0],
                                  g_loss_rec[0], g_loss_cls[0]))
L
lvmengsi 已提交
380 381 382 383 384 385 386 387 388

                batch_time = time.time() - s_time
                t_time += batch_time
                if (batch_id + 1) % self.cfg.print_freq == 0:
                    print("epoch{}: batch{}:  \n\
                         d_loss: {}; d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {} \n\
                         Batch_time_cost: {}".format(epoch_id, batch_id, d_loss[
                        0], d_loss_real[0], d_loss_fake[0], d_loss_cls[0],
                                                     d_loss_gp[0], batch_time))
L
lvmengsi 已提交
389 390
                sys.stdout.flush()
                batch_id += 1
u010070587's avatar
u010070587 已提交
391 392
                if self.cfg.enable_ce and batch_id == 100:
                   break
L
lvmengsi 已提交
393 394

            if self.cfg.run_test:
L
lvmengsi 已提交
395
                image_name = fluid.data(
L
lvmengsi 已提交
396
                    name='image_name',
L
lvmengsi 已提交
397
                    shape=[None, self.cfg.n_samples],
L
lvmengsi 已提交
398 399 400 401 402 403 404
                    dtype='int32')
                test_py_reader = fluid.io.PyReader(
                    feed_list=[image_real, label_org, label_trg, image_name],
                    capacity=32,
                    iterable=True,
                    use_double_buffer=True)
                test_py_reader.decorate_batch_generator(
L
lvmengsi 已提交
405 406 407
                    self.test_reader,
                    places=fluid.cuda_places()
                    if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
408 409

                test_program = test_gen_trainer.infer_program
L
lvmengsi 已提交
410
                utility.save_test_image(epoch_id, self.cfg, exe, place,
L
lvmengsi 已提交
411 412
                                        test_program, test_gen_trainer,
                                        test_py_reader)
L
lvmengsi 已提交
413 414 415 416 417 418

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer,
                                    "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, dis_trainer,
                                    "net_D")
u010070587's avatar
u010070587 已提交
419 420 421 422 423 424 425 426 427 428
            # used for continuous evaluation
            if self.cfg.enable_ce:
                device_num = fluid.core.get_cuda_device_count() if self.cfg.use_gpu else 1
                print("kpis\tattgan_g_loss_fake_card{}\t{}".format(device_num, g_loss_fake[0]))
                print("kpis\tattgan_g_loss_rec_card{}\t{}".format(device_num, g_loss_rec[0]))
                print("kpis\tattgan_g_loss_cls_card{}\t{}".format(device_num, g_loss_cls[0]))
                print("kpis\tattgan_d_loss_real_card{}\t{}".format(device_num, d_loss_real[0]))
                print("kpis\tattgan_d_loss_fake_card{}\t{}".format(device_num,d_loss_fake[0]))
                print("kpis\tattgan_d_loss_gp_card{}\t{}".format(device_num,d_loss_gp[0]))
                print("kpis\tattgan_Batch_time_cost_card{}\t{}".format(device_num,batch_time))