reader.py 11.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
import glob
import six
import os
import tarfile

import numpy as np


class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


class Converter(object):
    def __init__(self, vocab, beg, end, unk, delimiter, add_beg):
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
        self._delimiter = delimiter
        self._add_beg = add_beg

    def __call__(self, sentence):
        return ([self._beg] if self._add_beg else []) + [
            self._vocab.get(w, self._unk)
            for w in sentence.split(self._delimiter)
        ] + [self._end]


class ComposedConverter(object):
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, parallel_sentence):
        return [
            self._converters[i](parallel_sentence[i])
            for i in range(len(self._converters))
        ]


class SentenceBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


class TokenBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


class SampleInfo(object):
    def __init__(self, i, max_len, min_len):
        self.i = i
        self.min_len = min_len
        self.max_len = max_len


class MinMaxFilter(object):
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
        else:
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch


class DataReader(object):
    """
    The data reader loads all data from files and produces batches of data
    in the way corresponding to settings.

    An example of returning a generator producing data batches whose data
    is shuffled in each pass and sorted in each pool:

    ```
    train_data = DataReader(
        src_vocab_fpath='data/src_vocab_file',
        trg_vocab_fpath='data/trg_vocab_file',
        fpattern='data/part-*',
        use_token_batch=True,
        batch_size=2000,
        pool_size=10000,
        sort_type=SortType.POOL,
        shuffle=True,
        shuffle_batch=True,
        start_mark='<s>',
        end_mark='<e>',
        unk_mark='<unk>',
        clip_last_batch=False).batch_generator
    ```

    :param src_vocab_fpath: The path of vocabulary file of source language.
    :type src_vocab_fpath: basestring
    :param trg_vocab_fpath: The path of vocabulary file of target language.
    :type trg_vocab_fpath: basestring
    :param fpattern: The pattern to match data files.
    :type fpattern: basestring
    :param batch_size: The number of sequences contained in a mini-batch.
        or the maximum number of tokens (include paddings) contained in a
        mini-batch.
    :type batch_size: int
    :param pool_size: The size of pool buffer.
    :type pool_size: int
    :param sort_type: The grain to sort by length: 'global' for all
        instances; 'pool' for instances in pool; 'none' for no sort.
    :type sort_type: basestring
    :param clip_last_batch: Whether to clip the last uncompleted batch.
    :type clip_last_batch: bool
    :param tar_fname: The data file in tar if fpattern matches a tar file.
    :type tar_fname: basestring
    :param min_length: The minimum length used to filt sequences.
    :type min_length: int
    :param max_length: The maximum length used to filt sequences.
    :type max_length: int
    :param shuffle: Whether to shuffle all instances.
    :type shuffle: bool
    :param shuffle_batch: Whether to shuffle the generated batches.
    :type shuffle_batch: bool
    :param use_token_batch: Whether to produce batch data according to
        token number.
    :type use_token_batch: bool
    :param field_delimiter: The delimiter used to split source and target in
        each line of data file.
    :type field_delimiter: basestring
    :param token_delimiter: The delimiter used to split tokens in source or
        target sentences.
    :type token_delimiter: basestring
    :param start_mark: The token representing for the beginning of
        sentences in dictionary.
    :type start_mark: basestring
    :param end_mark: The token representing for the end of sentences
        in dictionary.
    :type end_mark: basestring
    :param unk_mark: The token representing for unknown word in dictionary.
    :type unk_mark: basestring
    :param seed: The seed for random.
    :type seed: int
    """

    def __init__(self,
                 src_vocab_fpath,
                 trg_vocab_fpath,
                 fpattern,
                 batch_size,
                 pool_size,
                 sort_type=SortType.GLOBAL,
                 clip_last_batch=True,
                 tar_fname=None,
                 min_length=0,
                 max_length=100,
                 shuffle=True,
                 shuffle_batch=False,
                 use_token_batch=False,
                 field_delimiter="\t",
                 token_delimiter=" ",
                 start_mark="<s>",
                 end_mark="<e>",
                 unk_mark="<unk>",
                 seed=0):
        self._src_vocab = self.load_dict(src_vocab_fpath)
        self._only_src = True
        if trg_vocab_fpath is not None:
            self._trg_vocab = self.load_dict(trg_vocab_fpath)
            self._only_src = False
        self._pool_size = pool_size
        self._batch_size = batch_size
        self._use_token_batch = use_token_batch
        self._sort_type = sort_type
        self._clip_last_batch = clip_last_batch
        self._shuffle = shuffle
        self._shuffle_batch = shuffle_batch
        self._min_length = min_length
        self._max_length = max_length
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
        self.load_src_trg_ids(end_mark, fpattern, start_mark, tar_fname,
                              unk_mark)
        self._random = np.random
        self._random.seed(seed)

    def load_src_trg_ids(self, end_mark, fpattern, start_mark, tar_fname,
                         unk_mark):
        converters = [
            Converter(
                vocab=self._src_vocab,
                beg=self._src_vocab[start_mark],
                end=self._src_vocab[end_mark],
                unk=self._src_vocab[unk_mark],
                delimiter=self._token_delimiter,
                add_beg=False)
        ]
        if not self._only_src:
            converters.append(
                Converter(
                    vocab=self._trg_vocab,
                    beg=self._trg_vocab[start_mark],
                    end=self._trg_vocab[end_mark],
                    unk=self._trg_vocab[unk_mark],
                    delimiter=self._token_delimiter,
                    add_beg=True))

        converters = ComposedConverter(converters)

        self._src_seq_ids = []
        self._trg_seq_ids = None if self._only_src else []
        self._sample_infos = []

        for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
            src_trg_ids = converters(line)
            self._src_seq_ids.append(src_trg_ids[0])
            lens = [len(src_trg_ids[0])]
            if not self._only_src:
                self._trg_seq_ids.append(src_trg_ids[1])
                lens.append(len(src_trg_ids[1]))
            self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))

    def _load_lines(self, fpattern, tar_fname):
        fpaths = glob.glob(fpattern)

        if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
            if tar_fname is None:
                raise Exception("If tar file provided, please set tar_fname.")

            f = tarfile.open(fpaths[0], "r")
            for line in f.extractfile(tar_fname):
                fields = line.strip("\n").split(self._field_delimiter)
                if (not self._only_src and len(fields) == 2) or (
                        self._only_src and len(fields) == 1):
                    yield fields
        else:
            for fpath in fpaths:
                if not os.path.isfile(fpath):
                    raise IOError("Invalid file: %s" % fpath)

                with open(fpath, "rb") as f:
                    for line in f:
                        if six.PY3:
269
                            line = line.decode("utf8", errors="ignore")
Y
Yibing Liu 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
                        fields = line.strip("\n").split(self._field_delimiter)
                        if (not self._only_src and len(fields) == 2) or (
                                self._only_src and len(fields) == 1):
                            yield fields

    @staticmethod
    def load_dict(dict_path, reverse=False):
        word_dict = {}
        with open(dict_path, "rb") as fdict:
            for idx, line in enumerate(fdict):
                if six.PY3:
                    line = line.decode()
                if reverse:
                    word_dict[idx] = line.strip("\n")
                else:
                    word_dict[line.strip("\n")] = idx
        return word_dict

    def batch_generator(self):
        # global sort or global shuffle
        if self._sort_type == SortType.GLOBAL:
            infos = sorted(self._sample_infos, key=lambda x: x.max_len)
        else:
            if self._shuffle:
                infos = self._sample_infos
                self._random.shuffle(infos)
            else:
                infos = self._sample_infos

            if self._sort_type == SortType.POOL:
                reverse = True
                for i in range(0, len(infos), self._pool_size):
                    # to avoid placing short next to long sentences
                    reverse = not reverse
                    infos[i:i + self._pool_size] = sorted(
                        infos[i:i + self._pool_size],
                        key=lambda x: x.max_len,
                        reverse=reverse)

        # concat batch
        batches = []
        batch_creator = TokenBatchCreator(
            self._batch_size
        ) if self._use_token_batch else SentenceBatchCreator(self._batch_size)
        batch_creator = MinMaxFilter(self._max_length, self._min_length,
                                     batch_creator)

        for info in infos:
            batch = batch_creator.append(info)
            if batch is not None:
                batches.append(batch)

        if not self._clip_last_batch and len(batch_creator.batch) != 0:
            batches.append(batch_creator.batch)

        if self._shuffle_batch:
            self._random.shuffle(batches)

        for batch in batches:
            batch_ids = [info.i for info in batch]

            if self._only_src:
                yield [[self._src_seq_ids[idx]] for idx in batch_ids]
            else:
                yield [(self._src_seq_ids[idx], self._trg_seq_ids[idx][:-1],
                        self._trg_seq_ids[idx][1:]) for idx in batch_ids]