modeling.py 14.0 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn

from .. import PretrainedModel, register_base_model

__all__ = [
21 22 23
    'ErnieModel', 'ErniePretrainedModel', 'ErnieForSequenceClassification',
    'ErnieForTokenClassification', 'ErnieForQuestionAnswering',
    'ErnieForPretraining', 'ErniePretrainingCriterion'
Z
Zeyu Chen 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
]


class ErnieEmbeddings(nn.Layer):
    """
    Include embeddings from word, position and token_type embeddings
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 hidden_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 pad_token_id=0):
        super(ErnieEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size, hidden_size, padding_idx=pad_token_id)
        self.position_embeddings = nn.Embedding(max_position_embeddings,
                                                hidden_size)
        self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)
        self.layer_norm = nn.LayerNorm(hidden_size)
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        if position_ids is None:
            # maybe need use shape op to unify static graph and dynamic graph
51 52 53 54 55
            #seq_length = input_ids.shape[1]
            ones = paddle.ones_like(input_ids, dtype="int64")
            seq_length = paddle.cumsum(ones, axis=1)
            position_ids = seq_length - ones
            position_ids.stop_gradient = True
Z
Zeyu Chen 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        if token_type_ids is None:
            token_type_ids = paddle.zeros_like(input_ids, dtype="int64")

        input_embedings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = input_embedings + position_embeddings + token_type_embeddings
        embeddings = self.layer_norm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class ErniePooler(nn.Layer):
    """
    """

    def __init__(self, hidden_size):
        super(ErniePooler, self).__init__()
        self.dense = nn.Linear(hidden_size, hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class ErniePretrainedModel(PretrainedModel):
    """
    An abstract class for pretrained ERNIE models. It provides ERNIE related
    `model_config_file`, `resource_files_names`, `pretrained_resource_files_map`,
    `pretrained_init_configuration`, `base_model_prefix` for downloading and
    loading pretrained models. See `PretrainedModel` for more details.
    """

    model_config_file = "model_config.json"
    pretrained_init_configuration = {
S
Steffy-zxf 已提交
97
        "ernie-1.0": {
Z
Zeyu Chen 已提交
98 99 100 101 102 103 104 105 106 107 108 109
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "relu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 768,
            "initializer_range": 0.02,
            "max_position_embeddings": 513,
            "num_attention_heads": 12,
            "num_hidden_layers": 12,
            "type_vocab_size": 2,
            "vocab_size": 18000,
            "pad_token_id": 0,
        },
110
        "ernie-tiny": {
Z
Zeyu Chen 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "relu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 1024,
            "initializer_range": 0.02,
            "intermediate_size": 4096,
            "max_position_embeddings": 600,
            "num_attention_heads": 16,
            "num_hidden_layers": 3,
            "type_vocab_size": 2,
            "vocab_size": 50006,
            "pad_token_id": 0,
        },
S
Steffy-zxf 已提交
124
        "ernie-2.0-en": {
Z
Zeyu Chen 已提交
125 126 127 128 129 130 131 132 133 134 135 136
            "attention_probs_dropout_prob": 0.1,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 768,
            "initializer_range": 0.02,
            "max_position_embeddings": 512,
            "num_attention_heads": 12,
            "num_hidden_layers": 12,
            "type_vocab_size": 4,
            "vocab_size": 30522,
            "pad_token_id": 0,
        },
S
Steffy-zxf 已提交
137
        "ernie-2.0-large-en": {
Z
Zeyu Chen 已提交
138
            "attention_probs_dropout_prob": 0.1,
S
Steffy-zxf 已提交
139
            "intermediate_size": 4096,  # special for ernie-2.0-large-en
Z
Zeyu Chen 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "hidden_size": 1024,
            "initializer_range": 0.02,
            "max_position_embeddings": 512,
            "num_attention_heads": 16,
            "num_hidden_layers": 24,
            "type_vocab_size": 4,
            "vocab_size": 30522,
            "pad_token_id": 0,
        },
    }
    resource_files_names = {"model_state": "model_state.pdparams"}
    pretrained_resource_files_map = {
        "model_state": {
S
Steffy-zxf 已提交
155
            "ernie-1.0":
Z
Zeyu Chen 已提交
156
            "https://paddlenlp.bj.bcebos.com/models/transformers/ernie/ernie_v1_chn_base.pdparams",
157
            "ernie-tiny":
Z
Zeyu Chen 已提交
158
            "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_tiny/ernie_tiny.pdparams",
S
Steffy-zxf 已提交
159
            "ernie-2.0-en":
160
            "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_v2_base/ernie_v2_eng_base.pdparams",
S
Steffy-zxf 已提交
161
            "ernie-2.0-large-en":
162
            "https://paddlenlp.bj.bcebos.com/models/transformers/ernie_v2_large/ernie_v2_eng_large.pdparams",
Z
Zeyu Chen 已提交
163 164 165 166 167 168 169 170 171
        }
    }
    base_model_prefix = "ernie"

    def init_weights(self, layer):
        """ Initialization hook """
        if isinstance(layer, (nn.Linear, nn.Embedding)):
            # only support dygraph, use truncated_normal and make it inplace
            # and configurable later
172 173 174 175 176 177 178 179
            if isinstance(layer.weight, paddle.Tensor):
                layer.weight.set_value(
                    paddle.tensor.normal(
                        mean=0.0,
                        std=self.initializer_range
                        if hasattr(self, "initializer_range") else
                        self.ernie.config["initializer_range"],
                        shape=layer.weight.shape))
Z
Zeyu Chen 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275


@register_base_model
class ErnieModel(ErniePretrainedModel):
    """
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02,
                 pad_token_id=0):
        super(ErnieModel, self).__init__()
        self.pad_token_id = pad_token_id
        self.initializer_range = initializer_range
        self.embeddings = ErnieEmbeddings(
            vocab_size, hidden_size, hidden_dropout_prob,
            max_position_embeddings, type_vocab_size, pad_token_id)
        encoder_layer = nn.TransformerEncoderLayer(
            hidden_size,
            num_attention_heads,
            intermediate_size,
            dropout=hidden_dropout_prob,
            activation=hidden_act,
            attn_dropout=attention_probs_dropout_prob,
            act_dropout=0)
        self.encoder = nn.TransformerEncoder(encoder_layer, num_hidden_layers)
        self.pooler = ErniePooler(hidden_size)
        self.apply(self.init_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None):
        if attention_mask is None:
            attention_mask = paddle.unsqueeze(
                (input_ids == self.pad_token_id
                 ).astype(self.pooler.dense.weight.dtype) * -1e9,
                axis=[1, 2])
        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids)
        encoder_outputs = self.encoder(embedding_output, attention_mask)
        sequence_output = encoder_outputs
        pooled_output = self.pooler(sequence_output)
        return sequence_output, pooled_output


class ErnieForSequenceClassification(ErniePretrainedModel):
    """
    Model for sentence (pair) classification task with ERNIE.
    Args:
        ernie (ErnieModel): An instance of `ErnieModel`.
        num_classes (int, optional): The number of classes. Default 2
        dropout (float, optional): The dropout probability for output of ERNIE.
            If None, use the same value as `hidden_dropout_prob` of `ErnieModel`
            instance `Ernie`. Default None
    """

    def __init__(self, ernie, num_classes=2, dropout=None):
        super(ErnieForSequenceClassification, self).__init__()
        self.num_classes = num_classes
        self.ernie = ernie  # allow ernie to be config
        self.dropout = nn.Dropout(dropout if dropout is not None else
                                  self.ernie.config["hidden_dropout_prob"])
        self.classifier = nn.Linear(self.ernie.config["hidden_size"],
                                    num_classes)
        self.apply(self.init_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None):
        _, pooled_output = self.ernie(
            input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            attention_mask=attention_mask)

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        return logits


class ErnieForQuestionAnswering(ErniePretrainedModel):
S
Steffy-zxf 已提交
276
    def __init__(self, ernie):
Z
Zeyu Chen 已提交
277 278 279 280 281
        super(ErnieForQuestionAnswering, self).__init__()
        self.ernie = ernie  # allow ernie to be config
        self.classifier = nn.Linear(self.ernie.config["hidden_size"], 2)
        self.apply(self.init_weights)

S
Steffy-zxf 已提交
282 283 284 285 286
    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None):
Z
Zeyu Chen 已提交
287 288 289
        sequence_output, _ = self.ernie(
            input_ids,
            token_type_ids=token_type_ids,
S
Steffy-zxf 已提交
290 291 292
            position_ids=position_ids,
            attention_mask=attention_mask)

Z
Zeyu Chen 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
        logits = self.classifier(sequence_output)
        logits = paddle.transpose(logits, perm=[2, 0, 1])
        start_logits, end_logits = paddle.unstack(x=logits, axis=0)

        return start_logits, end_logits


class ErnieForTokenClassification(ErniePretrainedModel):
    def __init__(self, ernie, num_classes=2, dropout=None):
        super(ErnieForTokenClassification, self).__init__()
        self.num_classes = num_classes
        self.ernie = ernie  # allow ernie to be config
        self.dropout = nn.Dropout(dropout if dropout is not None else
                                  self.ernie.config["hidden_dropout_prob"])
        self.classifier = nn.Linear(self.ernie.config["hidden_size"],
                                    num_classes)
        self.apply(self.init_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None):
        sequence_output, _ = self.ernie(
            input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            attention_mask=attention_mask)

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
        return logits
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369


class ErnieForPretraining(ErniePretrainedModel):
    def __init__(self, ernie):
        super(ErnieForPretraining, self).__init__()
        self.ernie = bert
        self.cls = ErniePretrainingHeads(
            self.ernie.config["hidden_size"],
            self.ernie.config["vocab_size"],
            self.ernie.config["hidden_act"],
            embedding_weights=self.ernie.embeddings.word_embeddings.weight)

        self.apply(self.init_weights)

    def forward(self,
                input_ids,
                token_type_ids=None,
                position_ids=None,
                attention_mask=None,
                masked_positions=None):
        outputs = self.ernie(
            input_ids,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            attention_mask=attention_mask)
        sequence_output, pooled_output = outputs[:2]
        prediction_scores, seq_relationship_score = self.cls(
            sequence_output, pooled_output, masked_positions)
        return prediction_scores, seq_relationship_score


class ErniePretrainingCriterion(paddle.nn.Layer):
    def __init__(self, vocab_size):
        super(ErniePretrainingCriterion, self).__init__()
        self.loss_fn = paddle.nn.loss.CrossEntropyLoss(ignore_index=-1)
        self.vocab_size = vocab_size

    def forward(self, prediction_scores, seq_relationship_score,
                masked_lm_labels, next_sentence_labels, masked_lm_scale):
        masked_lm_loss = paddle.nn.functional.softmax_with_cross_entropy(
            prediction_scores, masked_lm_labels, ignore_index=-1)
        masked_lm_loss = masked_lm_loss / masked_lm_scale
        next_sentence_loss = paddle.nn.functional.softmax_with_cross_entropy(
            seq_relationship_score, next_sentence_labels)
        return paddle.sum(masked_lm_loss) + paddle.mean(next_sentence_loss)