run_classifier.py 18.9 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Finetuning on classification tasks."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import argparse
import numpy as np
import subprocess
import multiprocessing

import paddle
import paddle.fluid as fluid

import reader.cls as reader
from model.bert import BertConfig
from model.classifier import create_model
from optimization import optimization
from utils.args import ArgumentGroup, print_arguments, check_cuda
from utils.init import init_pretraining_params, init_checkpoint
from utils.cards import get_cards
import dist_utils

num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path",         str,  None,           "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint",          str,  None,           "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params",  str,  None,
                "Init pre-training params which preforms fine-tuning from. If the "
                 "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("checkpoints",              str,  "checkpoints",  "Path to save checkpoints.")

train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    3,       "Number of epoches for fine-tuning.")
train_g.add_arg("learning_rate",     float,  5e-5,    "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float,  0.1,
                "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16",          bool,   False,   "Whether to use fp16 mixed precision training.")
train_g.add_arg("loss_scaling",      float,  1.0,
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")

log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir",      str,  None,  "Path to training data.")
data_g.add_arg("vocab_path",    str,  None,  "Vocabulary path.")
data_g.add_arg("max_seq_len",   int,  512,   "Number of words of the longest seqence.")
data_g.add_arg("batch_size",    int,  32,    "Total examples' number in batch for training. see also --in_tokens.")
data_g.add_arg("in_tokens",     bool, False,
              "If set, the batch size will be the maximum number of tokens in one batch. "
              "Otherwise, it will be the maximum number of examples in one batch.")
data_g.add_arg("do_lower_case", bool, True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
data_g.add_arg("random_seed",   int,  0,     "Random seed.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("use_cuda",                     bool,   True,  "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor",            bool,   False, "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("shuffle",                      bool,   True,  "")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    1,     "Ihe iteration intervals to clean up temporary variables.")
run_type_g.add_arg("task_name",                    str,    None,
                   "The name of task to perform fine-tuning, should be in {'xnli', 'mnli', 'cola', 'mrpc'}.")
run_type_g.add_arg("do_train",                     bool,   True,  "Whether to perform training.")
run_type_g.add_arg("do_val",                       bool,   True,  "Whether to perform evaluation on dev data set.")
run_type_g.add_arg("do_test",                      bool,   True,  "Whether to perform evaluation on test data set.")

parser.add_argument("--enable_ce", action='store_true', help="The flag indicating whether to run the task for continuous evaluation.")

args = parser.parse_args()
# yapf: enable.


def evaluate(exe, test_program, test_pyreader, fetch_list, eval_phase):
    test_pyreader.start()
    total_cost, total_acc, total_num_seqs = [], [], []
    time_begin = time.time()
    while True:
        try:
            np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
                                                   fetch_list=fetch_list)
            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    time_end = time.time()
    print("[%s evaluation] ave loss: %f, ave acc: %f, elapsed time: %f s" %
          (eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
           np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))

def get_device_num():
    # NOTE(zcd): for multi-processe training, each process use one GPU card.
    if num_trainers > 1 : return 1
    visible_device = os.environ.get('CUDA_VISIBLE_DEVICES', None)
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
        device_num = subprocess.check_output(['nvidia-smi','-L']).decode().count('\n')
    return device_num

def main(args):
    bert_config = BertConfig(args.bert_config_path)
    bert_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = get_device_num()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    task_name = args.task_name.lower()
    processors = {
        'xnli': reader.XnliProcessor,
        'cola': reader.ColaProcessor,
        'mrpc': reader.MrpcProcessor,
        'mnli': reader.MnliProcessor,
    }

    processor = processors[task_name](data_dir=args.data_dir,
                                      vocab_path=args.vocab_path,
                                      max_seq_len=args.max_seq_len,
                                      do_lower_case=args.do_lower_case,
                                      in_tokens=args.in_tokens,
                                      random_seed=args.random_seed)
    num_labels = len(processor.get_labels())

    if not (args.do_train or args.do_val or args.do_test):
        raise ValueError("For args `do_train`, `do_val` and `do_test`, at "
                         "least one of them must be True.")

    train_program = fluid.Program()
    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed
        train_program.random_seed = args.random_seed

    if args.do_train:
        # NOTE: If num_trainers > 1, the shuffle_seed must be set, because
        # the order of batch data generated by reader
        # must be the same in the respective processes.
        shuffle_seed = 1 if num_trainers > 1 else None
        train_data_generator = processor.data_generator(
            batch_size=args.batch_size,
            phase='train',
            epoch=args.epoch,
            dev_count=dev_count,
            shuffle=args.shuffle,
            shuffle_seed=shuffle_seed)

        num_train_examples = processor.get_num_examples(phase='train')

        if args.in_tokens:
            max_train_steps = args.epoch * num_train_examples // (
                args.batch_size // args.max_seq_len) // dev_count
        else:
            max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count

        warmup_steps = int(max_train_steps * args.warmup_proportion)
        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)
        print("Num warmup steps: %d" % warmup_steps)

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                train_pyreader, loss, probs, accuracy, num_seqs = create_model(
                    args,
                    pyreader_name='train_reader',
                    bert_config=bert_config,
                    num_labels=num_labels)
                scheduled_lr = optimization(
                    loss=loss,
                    warmup_steps=warmup_steps,
                    num_train_steps=max_train_steps,
                    learning_rate=args.learning_rate,
                    train_program=train_program,
                    startup_prog=startup_prog,
                    weight_decay=args.weight_decay,
                    scheduler=args.lr_scheduler,
                    use_fp16=args.use_fp16,
                    loss_scaling=args.loss_scaling)

        if args.verbose:
            if args.in_tokens:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program,
                    batch_size=args.batch_size // args.max_seq_len)
            else:
                lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                    program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                  (lower_mem, upper_mem, unit))

    if args.do_val or args.do_test:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                test_pyreader, loss, probs, accuracy, num_seqs = create_model(
                    args,
                    pyreader_name='test_reader',
                    bert_config=bert_config,
                    num_labels=num_labels)

        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint and args.init_pretraining_params:
            print(
                "WARNING: args 'init_checkpoint' and 'init_pretraining_params' "
                "both are set! Only arg 'init_checkpoint' is made valid.")
        if args.init_checkpoint:
            init_checkpoint(
                exe,
                args.init_checkpoint,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
        elif args.init_pretraining_params:
            init_pretraining_params(
                exe,
                args.init_pretraining_params,
                main_program=startup_prog,
                use_fp16=args.use_fp16)
    elif args.do_val or args.do_test:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or testing!")
        init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=startup_prog,
            use_fp16=args.use_fp16)

    if args.do_train:
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.use_experimental_executor = args.use_fast_executor
        exec_strategy.num_threads = dev_count
        exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope
        build_strategy = fluid.BuildStrategy()

        if args.use_cuda and num_trainers > 1:
            assert shuffle_seed is not None
            dist_utils.prepare_for_multi_process(exe, build_strategy, train_program)
            train_data_generator = fluid.contrib.reader.distributed_batch_reader(
                  train_data_generator)

        train_compiled_program = fluid.CompiledProgram(train_program).with_data_parallel(
                 loss_name=loss.name, build_strategy=build_strategy)

        train_pyreader.decorate_tensor_provider(train_data_generator)


    if args.do_train:
        train_pyreader.start()
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
        throughput = []
        ce_info = []
        while True:
            try:
                # steps += 1
                if steps % args.skip_steps == 0:
                    if warmup_steps <= 0:
                        fetch_list = [loss.name, accuracy.name, num_seqs.name]
                    else:
                        fetch_list = [
                            loss.name, accuracy.name, scheduled_lr.name,
                            num_seqs.name
                        ]
                else:
                    fetch_list = []

                outputs = exe.run(train_compiled_program, fetch_list=fetch_list)

                if steps % args.skip_steps == 0:
                    if warmup_steps <= 0:
                        np_loss, np_acc, np_num_seqs = outputs
                    else:
                        np_loss, np_acc, np_lr, np_num_seqs = outputs

                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size(
                        )
                        verbose += "learning rate: %f" % (
                            np_lr[0]
                            if warmup_steps > 0 else args.learning_rate)
                        print(verbose)

                    current_example, current_epoch = processor.get_train_progress(
                    )
                    time_end = time.time()
                    used_time = time_end - time_begin

                    log_record = "epoch: {}, progress: {}/{}, step: {}, ave loss: {}, ave acc: {}".format(
                           current_epoch, current_example, num_train_examples,
                           steps, np.sum(total_cost) / np.sum(total_num_seqs),
                           np.sum(total_acc) / np.sum(total_num_seqs))
                    ce_info.append([np.sum(total_cost) / np.sum(total_num_seqs), np.sum(total_acc) / np.sum(total_num_seqs), used_time])
                    if steps > 0 :
                        throughput.append( args.skip_steps / used_time)
                        log_record = log_record + ", speed: %f steps/s" % (args.skip_steps / used_time)
                        print(log_record)
                    else:
                        print(log_record)
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

                steps += 1
                if steps % args.save_steps == 0:
                    save_path = os.path.join(args.checkpoints,
                                             "step_" + str(steps))
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    print("Average throughtput: %s" % (np.average(throughput)))
                    throughput = []
                    # evaluate dev set
                    if args.do_val:
                        test_pyreader.decorate_tensor_provider(
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1,
                                dev_count=1,
                                shuffle=False))
                        evaluate(exe, test_prog, test_pyreader,
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "dev")
                    # evaluate test set
                    if args.do_test:
                        test_pyreader.decorate_tensor_provider(
                            processor.data_generator(
                                batch_size=args.batch_size,
                                phase='test',
                                epoch=1,
                                dev_count=1,
                                shuffle=False))
                        evaluate(exe, test_prog, test_pyreader,
                                 [loss.name, accuracy.name, num_seqs.name],
                                 "test")
            except fluid.core.EOFException:
                save_path = os.path.join(args.checkpoints, "step_" + str(steps))
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break
        if args.enable_ce:
            card_num = get_cards()
            ce_cost = 0
            ce_acc = 0
            ce_time = 0
            try:
                ce_cost = ce_info[-2][0]
                ce_acc = ce_info[-2][1]
                ce_time = ce_info[-2][2]
            except:
                print("ce info error")
            print("kpis\ttrain_duration_%s_card%s\t%s" %
                (args.task_name, card_num, ce_time))
            print("kpis\ttrain_cost_%s_card%s\t%f" %
                (args.task_name, card_num, ce_cost))
            print("kpis\ttrain_acc_%s_card%s\t%f" %
                (args.task_name, card_num, ce_acc))


    # final eval on dev set
    if args.do_val:
        test_pyreader.decorate_tensor_provider(
            processor.data_generator(
                batch_size=args.batch_size, phase='dev', epoch=1, dev_count=1,
                shuffle=False))
        print("Final validation result:")
        evaluate(exe, test_prog, test_pyreader,
                 [loss.name, accuracy.name, num_seqs.name], "dev")

    # final eval on test set
    if args.do_test:
        test_pyreader.decorate_tensor_provider(
            processor.data_generator(
                batch_size=args.batch_size,
                phase='test',
                epoch=1,
                dev_count=1,
                shuffle=False))
        print("Final test result:")
        evaluate(exe, test_prog, test_pyreader,
                 [loss.name, accuracy.name, num_seqs.name], "test")


if __name__ == '__main__':
    print_arguments(args)
    check_cuda(args.use_cuda)
    main(args)