network.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#!/usr/bin/env python
# coding: utf-8
from __future__ import print_function, absolute_import, division
import paddle.fluid as fluid
from collections import OrderedDict
"""
DCN network
"""


class DCN(object):
    def __init__(self,
                 cross_num=2,
                 dnn_hidden_units=(128, 128),
                 l2_reg_cross=1e-5,
                 dnn_use_bn=False,
17 18 19
                 clip_by_norm=None,
                 cat_feat_dims_dict=None,
                 is_sparse=False):
20 21 22 23 24
        self.cross_num = cross_num
        self.dnn_hidden_units = dnn_hidden_units
        self.l2_reg_cross = l2_reg_cross
        self.dnn_use_bn = dnn_use_bn
        self.clip_by_norm = clip_by_norm
25 26 27
        self.cat_feat_dims_dict = cat_feat_dims_dict if cat_feat_dims_dict else OrderedDict(
        )
        self.is_sparse = is_sparse
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

        self.dense_feat_names = ['I' + str(i) for i in range(1, 14)]
        self.sparse_feat_names = ['C' + str(i) for i in range(1, 27)]
        target = ['label']

        # {feat_name: dims}
        self.feat_dims_dict = OrderedDict(
            [(feat_name, 1) for feat_name in self.dense_feat_names])
        self.feat_dims_dict.update(self.cat_feat_dims_dict)

        self.net_input = None
        self.loss = None

    def build_network(self, is_test=False):
        # data input
        self.target_input = fluid.layers.data(
            name='label', shape=[1], dtype='float32')

        data_dict = OrderedDict()
        for feat_name in self.feat_dims_dict:
            data_dict[feat_name] = fluid.layers.data(
                name=feat_name, shape=[1], dtype='float32')

        self.net_input = self._create_embedding_input(data_dict)

        deep_out = self._deep_net(self.net_input, self.dnn_hidden_units,
                                  self.dnn_use_bn, is_test)
        cross_out, l2_reg_cross_loss = self._cross_net(self.net_input,
                                                       self.cross_num)
        last_out = fluid.layers.concat([deep_out, cross_out], axis=-1)
        logit = fluid.layers.fc(last_out, 1)
        self.prob = fluid.layers.sigmoid(logit)
        self.data_list = [self.target_input] + [
            data_dict[dense_name] for dense_name in self.dense_feat_names
        ] + [data_dict[sparse_name] for sparse_name in self.sparse_feat_names]

        # auc
        prob_2d = fluid.layers.concat([1 - self.prob, self.prob], 1)
        label_int = fluid.layers.cast(self.target_input, 'int64')
        auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=prob_2d,
                                                              label=label_int,
                                                              slide_steps=0)
        self.auc_var = auc_var

        # logloss
        logloss = fluid.layers.log_loss(self.prob, self.target_input)
        self.avg_logloss = fluid.layers.reduce_mean(logloss)

        # reg_coeff * l2_reg_cross
        l2_reg_cross_loss = self.l2_reg_cross * l2_reg_cross_loss
        self.loss = self.avg_logloss + l2_reg_cross_loss

    def backward(self, lr):
        p_g_clip = fluid.backward.append_backward(loss=self.loss)
        fluid.clip.set_gradient_clip(
            fluid.clip.GradientClipByGlobalNorm(clip_norm=self.clip_by_norm))
        p_g_clip = fluid.clip.append_gradient_clip_ops(p_g_clip)

        optimizer = fluid.optimizer.Adam(learning_rate=lr)
        # params_grads = optimizer.backward(self.loss)
        optimizer.apply_gradients(p_g_clip)

    def _deep_net(self, input, hidden_units, use_bn=False, is_test=False):
        for units in hidden_units:
            input = fluid.layers.fc(input=input, size=units)
            if use_bn:
                input = fluid.layers.batch_norm(input, is_test=is_test)
            input = fluid.layers.relu(input)
        return input

    def _cross_layer(self, x0, x, prefix):
        input_dim = x0.shape[-1]
        w = fluid.layers.create_parameter(
            [input_dim], dtype='float32', name=prefix + "_w")
        b = fluid.layers.create_parameter(
            [input_dim], dtype='float32', name=prefix + "_b")
        xw = fluid.layers.reduce_sum(x * w, dim=1, keep_dim=True)  # (N, 1)
        return x0 * xw + b + x, w

    def _cross_net(self, input, num_corss_layers):
        x = x0 = input
        l2_reg_cross_list = []
        for i in range(num_corss_layers):
            x, w = self._cross_layer(x0, x, "cross_layer_{}".format(i))
            l2_reg_cross_list.append(self._l2_loss(w))
        l2_reg_cross_loss = fluid.layers.reduce_sum(
            fluid.layers.concat(
                l2_reg_cross_list, axis=-1))
        return x, l2_reg_cross_loss

    def _l2_loss(self, w):
        return fluid.layers.reduce_sum(fluid.layers.square(w))

    def _create_embedding_input(self, data_dict):
        # sparse embedding
123 124 125 126 127 128 129 130
        sparse_emb_dict = OrderedDict((name, fluid.layers.embedding(
            input=fluid.layers.cast(
                data_dict[name], dtype='int64'),
            size=[
                self.feat_dims_dict[name] + 1,
                6 * int(pow(self.feat_dims_dict[name], 0.25))
            ],
            is_sparse=self.is_sparse)) for name in self.sparse_feat_names)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

        # combine dense and sparse_emb
        dense_input_list = [
            data_dict[name] for name in data_dict if name.startswith('I')
        ]
        sparse_emb_list = list(sparse_emb_dict.values())

        sparse_input = fluid.layers.concat(sparse_emb_list, axis=-1)
        sparse_input = fluid.layers.flatten(sparse_input)

        dense_input = fluid.layers.concat(dense_input_list, axis=-1)
        dense_input = fluid.layers.flatten(dense_input)
        dense_input = fluid.layers.cast(dense_input, 'float32')

        net_input = fluid.layers.concat([dense_input, sparse_input], axis=-1)

        return net_input