mnist_dygraph.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16 17
from __future__ import print_function

import numpy as np
18 19
from PIL import Image
import os
M
minqiyang 已提交
20 21
import paddle
import paddle.fluid as fluid
22
from paddle.fluid.optimizer import AdamOptimizer
M
minqiyang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable


class SimpleImgConvPool(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)

    def forward(self, inputs):
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x


class MNIST(fluid.dygraph.Layer):
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)

        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            self.full_name(), 1, 20, 5, 2, 2, act="relu")

        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            self.full_name(), 20, 50, 5, 2, 2, act="relu")

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

96
    def forward(self, inputs, label=None):
M
minqiyang 已提交
97 98 99
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        if label is not None:
            acc = fluid.layers.accuracy(input=x, label=label)
            return x, acc
        else:
            return x


def test_train(reader, model, batch_size):
    acc_set = []
    avg_loss_set = []
    for batch_id, data in enumerate(reader()):
        dy_x_data = np.array(
            [x[0].reshape(1, 28, 28)
             for x in data]).astype('float32')
        y_data = np.array(
            [x[1] for x in data]).astype('int64').reshape(batch_size, 1)

        img = to_variable(dy_x_data)
        label = to_variable(y_data)
        label.stop_gradient = True
        prediction, acc = model(img, label)
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_loss = fluid.layers.mean(loss)
        acc_set.append(float(acc.numpy()))
        avg_loss_set.append(float(avg_loss.numpy()))

        # get test acc and loss
    acc_val_mean = np.array(acc_set).mean()
    avg_loss_val_mean = np.array(avg_loss_set).mean()

    return avg_loss_val_mean, acc_val_mean
M
minqiyang 已提交
131 132 133


def train_mnist():
134 135
    epoch_num = 5
    BATCH_SIZE = 64
M
minqiyang 已提交
136 137 138
    with fluid.dygraph.guard():

        mnist = MNIST("mnist")
139
        adam = AdamOptimizer(learning_rate=0.001)
M
minqiyang 已提交
140
        train_reader = paddle.batch(
141 142 143
            paddle.dataset.mnist.train(), batch_size=BATCH_SIZE, drop_last=True)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=BATCH_SIZE, drop_last=True)
M
minqiyang 已提交
144 145 146 147 148 149
        for epoch in range(epoch_num):
            for batch_id, data in enumerate(train_reader()):
                dy_x_data = np.array(
                    [x[0].reshape(1, 28, 28)
                     for x in data]).astype('float32')
                y_data = np.array(
150
                    [x[1] for x in data]).astype('int64').reshape(BATCH_SIZE, 1)
M
minqiyang 已提交
151 152 153 154 155

                img = to_variable(dy_x_data)
                label = to_variable(y_data)
                label.stop_gradient = True

156 157
                cost, acc = mnist(img, label)

M
minqiyang 已提交
158 159 160
                loss = fluid.layers.cross_entropy(cost, label)
                avg_loss = fluid.layers.mean(loss)
                avg_loss.backward()
161 162
                adam.minimize(avg_loss)
                # save checkpoint
M
minqiyang 已提交
163
                mnist.clear_gradients()
164 165 166 167 168 169 170
                if batch_id % 100 == 0:
                    print("Loss at epoch {} step {}: {:}".format(epoch, batch_id, avg_loss.numpy()))

            mnist.eval()
            test_cost, test_acc = test_train(test_reader, mnist, BATCH_SIZE)
            mnist.train()
            print("Loss at epoch {} , Test avg_loss is: {}, acc is: {}".format(epoch, test_cost, test_acc))
M
minqiyang 已提交
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        fluid.dygraph.save_persistables(mnist.state_dict(), "save_dir")
        print("checkpoint saved")

    with fluid.dygraph.guard():

        mnist_infer = MNIST("mnist")
        # load checkpoint
        mnist_infer.load_dict(
            fluid.dygraph.load_persistables("save_dir"))
        print("checkpoint loaded")

        # start evaluate mode
        mnist_infer.eval()

        def load_image(file):
            im = Image.open(file).convert('L')
            im = im.resize((28, 28), Image.ANTIALIAS)
            im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)
            im = im / 255.0 * 2.0 - 1.0
            return im

        cur_dir = os.path.dirname(os.path.realpath(__file__))
        tensor_img = load_image(cur_dir + '/image/infer_3.png')

        results = mnist_infer(to_variable(tensor_img))
        lab = np.argsort(results.numpy())
        print("Inference result of image/infer_3.png is: %d" % lab[0][-1])
M
minqiyang 已提交
199 200 201 202


if __name__ == '__main__':
    train_mnist()