lambda_rank.py 4.5 KB
Newer Older
C
caoying03 已提交
1 2
import os
import sys
D
dong zhihong 已提交
3 4
import gzip
import functools
D
dongzhihong 已提交
5
import argparse
C
caoying03 已提交
6 7 8
import numpy as np

import paddle.v2 as paddle
D
dong zhihong 已提交
9 10


C
caoying03 已提交
11
def lambda_rank(input_dim):
D
dzhwinter 已提交
12
    """
C
caoying03 已提交
13 14 15
    lambda_rank is a Listwise rank model, the input data and label
    must be sequences.

D
dzhwinter 已提交
16 17 18 19
    https://papers.nips.cc/paper/2971-learning-to-rank-with-nonsmooth-cost-functions.pdf
    parameters :
      input_dim, one document's dense feature vector dimension

C
caoying03 已提交
20 21
    format of the dense_vector_sequence:
    [[f, ...], [f, ...], ...], f is a float or an int number
D
dzhwinter 已提交
22
    """
C
caoying03 已提交
23

24 25 26 27 28 29 30 31
    label = paddle.layer.data("label",
                              paddle.data_type.dense_vector_sequence(1))
    data = paddle.layer.data("data",
                             paddle.data_type.dense_vector_sequence(input_dim))

    # hidden layer
    hd1 = paddle.layer.fc(
        input=data,
D
dzhwinter 已提交
32 33 34 35 36 37
        size=128,
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=0.01))

    hd2 = paddle.layer.fc(
        input=hd1,
38 39 40 41
        size=10,
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=0.01))
    output = paddle.layer.fc(
D
dzhwinter 已提交
42
        input=hd2,
43 44 45
        size=1,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(initial_std=0.01))
D
dzhwinter 已提交
46 47 48 49

    # evaluator
    evaluator = paddle.evaluator.auc(input=output, label=label)
    # cost layer
50 51 52 53
    cost = paddle.layer.lambda_cost(
        input=output, score=label, NDCG_num=6, max_sort_size=-1)
    return cost, output

D
dong zhihong 已提交
54

C
caoying03 已提交
55
def train_lambda_rank(num_passes):
56 57 58 59 60 61 62
    # listwise input sequence
    fill_default_train = functools.partial(
        paddle.dataset.mq2007.train, format="listwise")
    fill_default_test = functools.partial(
        paddle.dataset.mq2007.test, format="listwise")
    train_reader = paddle.batch(
        paddle.reader.shuffle(fill_default_train, buf_size=100), batch_size=32)
D
dong zhihong 已提交
63
    test_reader = paddle.batch(fill_default_test, batch_size=32)
64

D
dzhwinter 已提交
65
    # mq2007 input_dim = 46, dense format
66
    input_dim = 46
C
caoying03 已提交
67
    cost, output = lambda_rank(input_dim)
68 69 70 71 72 73
    parameters = paddle.parameters.create(cost)

    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=paddle.optimizer.Adam(learning_rate=1e-4))
D
dong zhihong 已提交
74

75 76 77 78 79 80 81 82
    #  Define end batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            print "Pass %d Batch %d Cost %.9f" % (event.pass_id, event.batch_id,
                                                  event.cost)
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(reader=test_reader, feeding=feeding)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
C
caoying03 已提交
83
            with gzip.open("lambda_rank_params_%d.tar.gz" % (event.pass_id),
84
                           "w") as f:
85
                trainer.save_parameter_to_tar(f)
86 87 88 89 90 91 92

    feeding = {"label": 0, "data": 1}
    trainer.train(
        reader=train_reader,
        event_handler=event_handler,
        feeding=feeding,
        num_passes=num_passes)
D
dong zhihong 已提交
93 94


C
caoying03 已提交
95
def lambda_rank_infer(pass_id):
C
caoying03 已提交
96 97 98 99
    """lambda_rank model inference interface

    parameters:
        pass_id : inference model in pass_id
100 101 102
    """
    print "Begin to Infer..."
    input_dim = 46
C
caoying03 已提交
103
    output = lambda_rank(input_dim)
104
    parameters = paddle.parameters.Parameters.from_tar(
C
caoying03 已提交
105
        gzip.open("lambda_rank_params_%d.tar.gz" % (pass_id - 1)))
106 107 108

    infer_query_id = None
    infer_data = []
D
dzhwinter 已提交
109
    infer_data_num = 1
110 111 112 113 114 115
    fill_default_test = functools.partial(
        paddle.dataset.mq2007.test, format="listwise")
    for label, querylist in fill_default_test():
        infer_data.append(querylist)
        if len(infer_data) == infer_data_num:
            break
D
dzhwinter 已提交
116

C
caoying03 已提交
117 118
    # predict score of infer_data document.
    # Re-sort the document base on predict score
D
dzhwinter 已提交
119
    # in descending order. then we build the ranking documents
120 121 122
    predicitons = paddle.infer(
        output_layer=output, parameters=parameters, input=infer_data)
    for i, score in enumerate(predicitons):
D
dzhwinter 已提交
123
        print i, score
124

D
dong zhihong 已提交
125 126

if __name__ == '__main__':
D
dongzhihong 已提交
127 128 129 130 131 132 133
    parser = argparse.ArgumentParser(description='LambdaRank demo')
    parser.add_argument("--run_type", type=str, help="run type is train|infer")
    parser.add_argument(
        "--num_passes",
        type=int,
        help="num of passes in train| infer pass number of model")
    args = parser.parse_args()
C
caoying03 已提交
134
    paddle.init(use_gpu=False, trainer_count=1)
D
dongzhihong 已提交
135 136 137
    if args.run_type == "train":
        train_lambda_rank(args.num_passes)
    elif args.run_type == "infer":
D
dongzhihong 已提交
138
        lambda_rank_infer(pass_id=args.num_passes - 1)