fpn.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register

littletomatodonkey's avatar
littletomatodonkey 已提交
28
__all__ = ['FPN', 'ESFPN']
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176


@register
class FPN(object):
    """
    Feature Pyramid Network, see https://arxiv.org/abs/1612.03144

    Args:
        num_chan (int): number of feature channels
        min_level (int): lowest level of the backbone feature map to use
        max_level (int): highest level of the backbone feature map to use
        spatial_scale (list): feature map scaling factor
        has_extra_convs (bool): whether has extral convolutions in higher levels
    """

    def __init__(self,
                 num_chan=256,
                 min_level=2,
                 max_level=6,
                 spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
                 has_extra_convs=False):
        self.num_chan = num_chan
        self.min_level = min_level
        self.max_level = max_level
        self.spatial_scale = spatial_scale
        self.has_extra_convs = has_extra_convs

    def _add_topdown_lateral(self, body_name, body_input, upper_output):
        lateral_name = 'fpn_inner_' + body_name + '_lateral'
        topdown_name = 'fpn_topdown_' + body_name
        fan = body_input.shape[1]
        lateral = fluid.layers.conv2d(
            body_input,
            self.num_chan,
            1,
            param_attr=ParamAttr(
                name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
            bias_attr=ParamAttr(
                name=lateral_name + "_b",
                learning_rate=2.,
                regularizer=L2Decay(0.)),
            name=lateral_name)
        shape = fluid.layers.shape(upper_output)
        shape_hw = fluid.layers.slice(shape, axes=[0], starts=[2], ends=[4])
        out_shape_ = shape_hw * 2
        out_shape = fluid.layers.cast(out_shape_, dtype='int32')
        out_shape.stop_gradient = True
        topdown = fluid.layers.resize_nearest(
            upper_output, scale=2., actual_shape=out_shape, name=topdown_name)

        return lateral + topdown

    def get_output(self, body_dict):
        """
        Add FPN onto backbone.

        Args:
            body_dict(OrderedDict): Dictionary of variables and each element is the
                output of backbone.

        Return:
            fpn_dict(OrderedDict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.
        """
        body_name_list = list(body_dict.keys())[::-1]
        num_backbone_stages = len(body_name_list)
        self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
        fpn_inner_name = 'fpn_inner_' + body_name_list[0]
        body_input = body_dict[body_name_list[0]]
        fan = body_input.shape[1]
        self.fpn_inner_output[0] = fluid.layers.conv2d(
            body_input,
            self.num_chan,
            1,
            param_attr=ParamAttr(
                name=fpn_inner_name + "_w", initializer=Xavier(fan_out=fan)),
            bias_attr=ParamAttr(
                name=fpn_inner_name + "_b",
                learning_rate=2.,
                regularizer=L2Decay(0.)),
            name=fpn_inner_name)
        for i in range(1, num_backbone_stages):
            body_name = body_name_list[i]
            body_input = body_dict[body_name]
            top_output = self.fpn_inner_output[i - 1]
            fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
                                                         top_output)
            self.fpn_inner_output[i] = fpn_inner_single
        fpn_dict = {}
        fpn_name_list = []
        for i in range(num_backbone_stages):
            fpn_name = 'fpn_' + body_name_list[i]
            fan = self.fpn_inner_output[i].shape[1] * 3 * 3
            fpn_output = fluid.layers.conv2d(
                self.fpn_inner_output[i],
                self.num_chan,
                filter_size=3,
                padding=1,
                param_attr=ParamAttr(
                    name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
                bias_attr=ParamAttr(
                    name=fpn_name + "_b",
                    learning_rate=2.,
                    regularizer=L2Decay(0.)),
                name=fpn_name)
            fpn_dict[fpn_name] = fpn_output
            fpn_name_list.append(fpn_name)
        if not self.has_extra_convs and self.max_level - self.min_level == len(
                self.spatial_scale):
            body_top_name = fpn_name_list[0]
            body_top_extension = fluid.layers.pool2d(
                fpn_dict[body_top_name],
                1,
                'max',
                pool_stride=2,
                name=body_top_name + '_subsampled_2x')
            fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
            fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
            self.spatial_scale.insert(0, self.spatial_scale[0] * 0.5)
        # Coarser FPN levels introduced for RetinaNet
        highest_backbone_level = self.min_level + len(self.spatial_scale) - 1
        if self.has_extra_convs and self.max_level > highest_backbone_level:
            fpn_blob = body_dict[body_name_list[0]]
            for i in range(highest_backbone_level + 1, self.max_level + 1):
                fpn_blob_in = fpn_blob
                fpn_name = 'fpn_' + str(i)
                if i > highest_backbone_level + 1:
                    fpn_blob_in = fluid.layers.relu(fpn_blob)
                fan = fpn_blob_in.shape[1] * 3 * 3
                fpn_blob = fluid.layers.conv2d(
                    input=fpn_blob_in,
                    num_filters=self.num_chan,
                    filter_size=3,
                    stride=2,
                    padding=1,
                    param_attr=ParamAttr(
                        name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
                    bias_attr=ParamAttr(
                        name=fpn_name + "_b",
                        learning_rate=2.,
                        regularizer=L2Decay(0.)),
                    name=fpn_name)
                fpn_dict[fpn_name] = fpn_blob
                fpn_name_list.insert(0, fpn_name)
                self.spatial_scale.insert(0, self.spatial_scale[0] * 0.5)
        res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
        return res_dict, self.spatial_scale
littletomatodonkey's avatar
littletomatodonkey 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290


@register
class ESFPN(object):
    """
    Enhanced Single Feature Pyramid Network

    Args:
        num_chan (int): number of feature channels
        level (int) : level 
        min_level (int): lowest level of the backbone feature map to use
        max_level (int): highest level of the backbone feature map to use
        spatial_scale (list): feature map scaling factor
        has_extra_convs (bool): whether has extral convolutions in higher levels
    """

    def __init__(self,
                 num_chan=256,
                 min_level=2,
                 max_level=4,
                 spatial_scale=[1. / 16., 1. / 8., 1. / 4.],
                 has_extra_convs=False):
        self.num_chan = num_chan
        self.min_level = min_level
        self.max_level = max_level
        self.spatial_scale = spatial_scale
        self.has_extra_convs = has_extra_convs
        return
    
    def _conv_reduce(self, input, name, num_filters=256, filter_size=1, padding=0):
        '''conv_reduce'''
        out = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=1,
            padding=padding,
            act=None,
            param_attr=ParamAttr(name=name + "_reduce_weights"),
            bias_attr=ParamAttr(name=name + "_reduce_biases"),
            name=name + '.reduce.output.1')
        return out
    
    def _fpn_upsampling(self, input, shape_var):
        shape_hw = fluid.layers.slice(shape_var, axes=[0], starts=[2], ends=[4])
        out_shape_ = shape_hw
        out_shape = fluid.layers.cast(out_shape_, dtype='int32')
        out_shape.stop_gradient = True
        output = fluid.layers.resize_bilinear(input, scale=2., actual_shape=out_shape)
        return output
    
    def _add_es_topdown_lateral(self, conv_upper, conv_down, output_level):
        '''
        _add_es_topdown_lateral
        conv_upper   : upper level feature
        conv_down    : low level feature
        output_level : output feature map level, same as conv_down
        '''
        down_shape_op = fluid.layers.shape(conv_down)
        up = self._fpn_upsampling(conv_upper, down_shape_op)
        
        output = fluid.layers.elementwise_add(up, conv_down)
        output_name = 'P{}.smooth.conv1_1.output.1'.format( output_level )
        output = fluid.layers.conv2d(
                    input=output,
                    num_filters=self.num_chan,
                    filter_size=3,
                    stride=1,
                    padding=1,
                    act=None,
                    param_attr=ParamAttr(name="P{}_smooth_weights".format( output_level )),
                    bias_attr=ParamAttr("P{}_smooth_biases".format( output_level )),
                    name=output_name)
        return output, output_name
    
    def conv_smooth_reduce( self, conv, level ):
        '''
        conv_smooth
        '''
        ch_med = conv.shape[1] // 2
        conv_st1 = self._conv_reduce(conv,
                                     "res{}_r1".format(level), 
                                     num_filters = ch_med,
                                     filter_size=3,
                                     padding=1)
        conv_st2 = self._conv_reduce(conv_st1,
                                     "res{}".format(level),
                                     num_filters = self.num_chan,
                                     filter_size=1,
                                     padding=0)
        return conv_st2
    
    def get_output(self, body_dict):
        body_name_list = list(body_dict.keys())[::-1]
        res5_name, res4_name, res3_name, res2_name = body_name_list

        res2 = body_dict[res2_name]
        res3 = body_dict[res3_name]
        res4 = body_dict[res4_name]
        res5 = body_dict[res5_name]
        
        #reduce two stages
        res5_reduce = self.conv_smooth_reduce( res5, 5 )
        res4_reduce = self.conv_smooth_reduce( res4, 4 )
        res3_reduce = self.conv_smooth_reduce( res3, 3 )
        
        P4, P4_name = self._add_es_topdown_lateral( res5_reduce, res4_reduce, 4 )
        P3, P3_name = self._add_es_topdown_lateral( P4, res3_reduce, 3 )
        P2, P2_name = self._add_es_topdown_lateral( P3, res2, 2 )
        
        fpn_name_list = [P4_name, P3_name, P2_name]
        fpn_dict = { P4_name:P4, P3_name:P3, P2_name:P2  }
        res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
        return res_dict, self.spatial_scale