utility.py 28.3 KB
Newer Older
R
ruri 已提交
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
R
ruri 已提交
18

R
root 已提交
19
import six
R
ruri 已提交
20 21 22 23
import argparse
import functools
import sys
import os
24
import logging
R
ruri 已提交
25 26
import warnings
import signal
27
import json
R
ruri 已提交
28

29
import numpy as np
R
ruri 已提交
30 31
import paddle
import paddle.fluid as fluid
32 33 34
from paddle.fluid.wrapped_decorator import signature_safe_contextmanager
from paddle.fluid.framework import Program, program_guard, name_scope, default_main_program
from paddle.fluid import unique_name, layers
35 36

import distutils.util
37
from utils import dist_utils
38

39 40 41 42 43
from utils.optimizer import Optimizer

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
def print_arguments(args):
    """Print argparse's arguments.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        parser.add_argument("name", default="Jonh", type=str, help="User name.")
        args = parser.parse_args()
        print_arguments(args)

    :param args: Input argparse.Namespace for printing.
    :type args: argparse.Namespace
    """
60 61

    logger.info("-------------  Configuration Arguments -------------")
R
root 已提交
62
    for arg, value in sorted(six.iteritems(vars(args))):
63 64
        logger.info("%25s : %s" % (arg, value))
    logger.info("----------------------------------------------------")
65 66 67


def add_arguments(argname, type, default, help, argparser, **kwargs):
R
ruri 已提交
68
    """Add argparse's argument. 
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
    type = distutils.util.strtobool if type == bool else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)
R
ruri 已提交
85

R
ruri 已提交
86 87 88 89 90 91

def parse_args():
    """Add arguments

    Returns: 
        all training args
R
ruri 已提交
92
    """
R
ruri 已提交
93 94 95 96 97 98 99 100 101
    parser = argparse.ArgumentParser(description=__doc__)
    add_arg = functools.partial(add_arguments, argparser=parser)
    # yapf: disable

    # ENV
    add_arg('use_gpu',                  bool,   True,                   "Whether to use GPU.")
    add_arg('model_save_dir',           str,    "./output",        "The directory path to save model.")
    add_arg('data_dir',                 str,    "./data/ILSVRC2012/",   "The ImageNet dataset root directory.")
    add_arg('pretrained_model',         str,    None,                   "Whether to load pretrained model.")
102
    add_arg('finetune_exclude_pretrained_params', str, None,            "Ignore params when doing finetune")
R
ruri 已提交
103 104
    add_arg('checkpoint',               str,    None,                   "Whether to resume checkpoint.")
    add_arg('print_step',               int,    10,                     "The steps interval to print logs")
105
    add_arg('save_step',                int,    1,                      "The steps interval to save checkpoints")
R
ruri 已提交
106 107 108 109

    # SOLVER AND HYPERPARAMETERS
    add_arg('model',                    str,    "ResNet50",   "The name of network.")
    add_arg('total_images',             int,    1281167,                "The number of total training images.")
R
ruri 已提交
110
    parser.add_argument('--image_shape', nargs='+', type=int, default=[3, 224, 224], help="The shape of image")
R
ruri 已提交
111 112
    add_arg('num_epochs',               int,    120,                    "The number of total epochs.")
    add_arg('class_dim',                int,    1000,                   "The number of total classes.")
113
    add_arg('batch_size',               int,    8,                      "Minibatch size on all the devices.")
114
    add_arg('test_batch_size',          int,    8,                   "Test batch size on all the devices.")
R
ruri 已提交
115 116 117 118
    add_arg('lr',                       float,  0.1,                    "The learning rate.")
    add_arg('lr_strategy',              str,    "piecewise_decay",      "The learning rate decay strategy.")
    add_arg('l2_decay',                 float,  1e-4,                   "The l2_decay parameter.")
    add_arg('momentum_rate',            float,  0.9,                    "The value of momentum_rate.")
119 120 121 122
    add_arg('warm_up_epochs',           float,  5.0,                    "The value of warm up epochs")
    add_arg('decay_epochs',             float,  2.4,                    "Decay epochs of exponential decay learning rate scheduler")
    add_arg('decay_rate',               float,  0.97,                   "Decay rate of exponential decay learning rate scheduler")
    add_arg('drop_connect_rate',        float,  0.2,                    "The value of drop connect rate")
R
ruri 已提交
123
    parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
124

R
ruri 已提交
125
    # READER AND PREPROCESS
126
    add_arg('use_dali',                 bool,   False,                  "Whether to use nvidia DALI for preprocessing")
R
ruri 已提交
127 128 129 130 131 132 133 134 135
    add_arg('lower_scale',              float,  0.08,                   "The value of lower_scale in ramdom_crop")
    add_arg('lower_ratio',              float,  3./4.,                  "The value of lower_ratio in ramdom_crop")
    add_arg('upper_ratio',              float,  4./3.,                  "The value of upper_ratio in ramdom_crop")
    add_arg('resize_short_size',        int,    256,                    "The value of resize_short_size")
    add_arg('use_mixup',                bool,   False,                  "Whether to use mixup")
    add_arg('mixup_alpha',              float,  0.2,                    "The value of mixup_alpha")
    add_arg('reader_thread',            int,    8,                      "The number of multi thread reader")
    add_arg('reader_buf_size',          int,    2048,                   "The buf size of multi thread reader")
    add_arg('interpolation',            int,    None,                   "The interpolation mode")
136
    add_arg('use_aa',                   bool,   False,                  "Whether to use auto augment")
R
ruri 已提交
137 138 139 140
    parser.add_argument('--image_mean', nargs='+', type=float, default=[0.485, 0.456, 0.406], help="The mean of input image data")
    parser.add_argument('--image_std', nargs='+', type=float, default=[0.229, 0.224, 0.225], help="The std of input image data")

    # SWITCH
141
    add_arg('validate',                 bool,   True,                   "whether to validate when training.")
R
ruri 已提交
142 143 144 145
    add_arg('use_fp16',                 bool,   False,                  "Whether to enable half precision training with fp16." )
    add_arg('scale_loss',               float,  1.0,                    "The value of scale_loss for fp16." )
    add_arg('use_dynamic_loss_scaling', bool,   True,                   "Whether to use dynamic loss scaling.")

R
ruri 已提交
146
    add_arg('use_label_smoothing',      bool,   False,                  "Whether to use label_smoothing")
147
    add_arg('label_smoothing_epsilon',  float,  0.1,                    "The value of label_smoothing_epsilon parameter")
R
ruri 已提交
148 149
    #NOTE: (2019/08/08) temporary disable use_distill
    #add_arg('use_distill',              bool,   False,                  "Whether to use distill")
150 151 152
    add_arg('use_ema',                  bool,   False,                  "Whether to use ExponentialMovingAverage.")
    add_arg('ema_decay',                float,  0.9999,                 "The value of ema decay rate")
    add_arg('padding_type',             str,    "SAME",                 "Padding type of convolution")
153
    add_arg('use_se',                   bool,   True,                   "Whether to use Squeeze-and-Excitation module for EfficientNet.")
154

155
    #NOTE: args for profiler
156 157 158 159 160
    add_arg("enable_ce",                bool,   False,                  "Whether to enable ce")
    add_arg('random_seed',              int,    None,                   "random seed")
    add_arg('is_profiler',              bool,   False,                  "Whether to start the profiler")
    add_arg('profiler_path',            str,    './profilier_files',                   "the profiler output file path")
    add_arg('max_iter',                 int,    0,                      "the max train batch num")
R
ruri 已提交
161
    add_arg('same_feed',                int,    0,                      "whether to feed same images")
R
ruri 已提交
162 163 164


    # yapf: enable
R
ruri 已提交
165 166 167 168 169 170 171
    args = parser.parse_args()

    return args


def check_gpu():
    """   
R
ruri 已提交
172
    Log error and exit when set use_gpu=true in paddlepaddle
R
ruri 已提交
173
    cpu ver sion.
R
ruri 已提交
174 175
    """
    err = "Config use_gpu cannot be set as true while you are " \
R
ruri 已提交
176 177 178 179
                "using paddlepaddle cpu version ! \nPlease try: \n" \
                "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
                "\t2. Set use_gpu as false in config file to run " \
                "model on CPU"
180
    try:
R
ruri 已提交
181
        if args.use_gpu and not fluid.is_compiled_with_cuda():
182
            logger.error(err)
R
ruri 已提交
183 184 185
            sys.exit(1)
    except Exception as e:
        pass
R
ruri 已提交
186 187


188 189 190 191 192 193 194 195 196 197 198 199
def check_version():
    """
    Log error and exit when the installed version of paddlepaddle is
    not satisfied.
    """
    err = "PaddlePaddle version 1.6 or higher is required, " \
          "or a suitable develop version is satisfied as well. \n" \
          "Please make sure the version is good with your code." \

    try:
        fluid.require_version('1.6.0')
    except Exception as e:
200
        logger.error(err)
201 202 203
        sys.exit(1)


R
ruri 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def check_args(args):
    """check arguments before running

    Args:
        all arguments
    """

    # check models name
    sys.path.append("..")
    import models
    model_list = [m for m in dir(models) if "__" not in m]
    assert args.model in model_list, "{} is not in lists: {}, please check the model name".format(
        args.model, model_list)

    # check learning rate strategy
219
    lr_strategy_list = [l for l in dir(Optimizer) if not l.startswith('__')]
R
ruri 已提交
220
    if args.lr_strategy not in lr_strategy_list:
221 222
        logger.warning(
            "\n{} is not in lists: {}, \nUse default learning strategy now!".
R
ruri 已提交
223 224
            format(args.lr_strategy, lr_strategy_list))
        args.lr_strategy = "default_decay"
225

R
ruri 已提交
226 227 228 229
    # check confict of GoogLeNet and mixup
    if args.model == "GoogLeNet":
        assert args.use_mixup == False, "Cannot use mixup processing in GoogLeNet, please set use_mixup = False."

230
    # check interpolation of reader settings
R
ruri 已提交
231 232 233 234 235
    if args.interpolation:
        assert args.interpolation in [
            0, 1, 2, 3, 4
        ], "Wrong interpolation, please set:\n0: cv2.INTER_NEAREST\n1: cv2.INTER_LINEAR\n2: cv2.INTER_CUBIC\n3: cv2.INTER_AREA\n4: cv2.INTER_LANCZOS4"

236
    # check padding type
237 238 239 240 241
    if args.padding_type:
        assert args.padding_type in [
            "SAME", "VALID", "DYNAMIC"
        ], "Wrong padding_type, please set:\nSAME\nVALID\nDYNAMIC"

242
    # check checkpint and pretrained_model
R
ruri 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    assert args.checkpoint is None or args.pretrained_model is None, "Do not init model by checkpoint and pretrained_model both."

    # check pretrained_model path for loading
    if args.pretrained_model is not None:
        assert isinstance(args.pretrained_model, str)
        assert os.path.isdir(
            args.
            pretrained_model), "please support available pretrained_model path."

    #FIXME: check checkpoint path for saving
    if args.checkpoint is not None:
        assert isinstance(args.checkpoint, str)
        assert os.path.isdir(
            args.checkpoint
        ), "please support available checkpoint path for initing model."

    # check gpu: when using gpu, the number of visible cards should divide batch size
    if args.use_gpu:
        assert args.batch_size % fluid.core.get_cuda_device_count(
        ) == 0, "please support correct batch_size({}), which can be divided by available cards({}), you can change the number of cards by indicating: export CUDA_VISIBLE_DEVICES= ".format(
            args.batch_size, fluid.core.get_cuda_device_count())

    # check data directory
    assert os.path.isdir(
        args.data_dir
    ), "Data doesn't exist in {}, please load right path".format(args.data_dir)

270
    # check CE
R
ruri 已提交
271 272
    if args.enable_ce:
        args.random_seed = 0
273
        logger.warning("CE is running now! already set random seed to 0")
R
ruri 已提交
274

275
    # check class_dim
276
    assert args.class_dim > 1, "class_dim must greater than 1"
R
ruri 已提交
277

278
    # check dali preprocess
R
ruri 已提交
279
    if args.use_dali:
280
        logger.warning(
R
ruri 已提交
281 282 283
            "DALI preprocessing is activated!!!\nWarning: 1. Please make sure paddlepaddle is compiled by GCC5.4 or later version!\n\t 2. Please make sure nightly builds DALI is installed correctly.\n----------------------------------------------------"
        )

284
    #check gpu
R
ruri 已提交
285
    check_gpu()
286
    check_version()
R
ruri 已提交
287 288 289


def init_model(exe, args, program):
290 291 292
    """load model from checkpoint or pretrained model
    """

R
ruri 已提交
293 294
    if args.checkpoint:
        fluid.io.load_persistables(exe, args.checkpoint, main_program=program)
295
        logger.info("Finish initing model from %s" % (args.checkpoint))
R
ruri 已提交
296 297

    if args.pretrained_model:
298
        """
299
        # yapf: disable
300
        # This is a dict of fc layers in all the classification models.
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        final_fc_name = [
                         "fc8_weights","fc8_offset", #alexnet
                         "fc_weights","fc_offset", #darknet, densenet, dpn, hrnet, mobilenet_v3, res2net, res2net_vd, resnext, resnext_vd, xception
                         #efficient
                         "out","out_offset", "out1","out1_offset", "out2","out2_offset", #googlenet
                         "final_fc_weights", "final_fc_offset", #inception_v4
                         "fc7_weights", "fc7_offset", #mobilenetv1
                         "fc10_weights", "fc10_offset", #mobilenetv2
                         "fc_0", #resnet, resnet_vc, resnet_vd
                         "fc.weight", "fc.bias", #resnext101_wsl
                         "fc6_weights", "fc6_offset", #se_resnet_vd, se_resnext, se_resnext_vd, shufflenet_v2, shufflenet_v2_swish,
                         #squeezenet
                         "fc8_weights", "fc8_offset", #vgg
                         "fc_bias" #"fc_weights", xception_deeplab
                         ]
        # yapf: enable
317 318 319 320 321 322 323
        """
        final_fc_name = []
        if args.finetune_exclude_pretrained_params:
            final_fc_name = [
                str(s)
                for s in args.finetune_exclude_pretrained_params.split(",")
            ]
R
ruri 已提交
324

325
        def is_parameter(var):
326 327 328 329 330 331 332 333
            fc_exclude_flag = False
            for item in final_fc_name:
                if item in var.name:
                    fc_exclude_flag = True

            return isinstance(
                var, fluid.framework.
                Parameter) and not fc_exclude_flag and os.path.exists(
334
                    os.path.join(args.pretrained_model, var.name))
R
ruri 已提交
335

336
        logger.info("Load pretrain weights from {}, exclude params {}.".format(
337
            args.pretrained_model, final_fc_name))
338
        vars = filter(is_parameter, program.list_vars())
R
ruri 已提交
339
        fluid.io.load_vars(
340
            exe, args.pretrained_model, vars=vars, main_program=program)
R
ruri 已提交
341 342 343


def save_model(args, exe, train_prog, info):
344 345 346
    """save model in model_path
    """

R
ruri 已提交
347 348 349 350
    model_path = os.path.join(args.model_save_dir, args.model, str(info))
    if not os.path.isdir(model_path):
        os.makedirs(model_path)
    fluid.io.save_persistables(exe, model_path, main_program=train_prog)
351
    logger.info("Already save model in %s" % (model_path))
R
ruri 已提交
352 353


354 355 356
def save_json(info, path):
    """ save eval result or infer result to file as json format.
    """
357
    with open(path, 'w') as f:
358 359 360
        json.dump(info, f)


361 362
def create_data_loader(is_train, args):
    """create data_loader
R
ruri 已提交
363 364

    Usage:
365
        Using mixup process in training, it will return 5 results, include data_loader, image, y_a(label), y_b(label) and lamda, or it will return 3 results, include data_loader, image, and label.
R
ruri 已提交
366 367 368 369 370 371

    Args: 
        is_train: mode
        args: arguments

    Returns:
372
        data_loader and the input data of net, 
R
ruri 已提交
373
    """
R
ruri 已提交
374
    image_shape = args.image_shape
375 376 377 378 379
    feed_image = fluid.data(
        name="feed_image",
        shape=[None] + image_shape,
        dtype="float32",
        lod_level=0)
R
ruri 已提交
380

381 382 383 384
    feed_label = fluid.data(
        name="feed_label", shape=[None, 1], dtype="int64", lod_level=0)
    feed_y_a = fluid.data(
        name="feed_y_a", shape=[None, 1], dtype="int64", lod_level=0)
R
ruri 已提交
385

386 387
    capacity = 64 if int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) <= 1 else 8

R
ruri 已提交
388
    if is_train and args.use_mixup:
389 390 391 392
        feed_y_b = fluid.data(
            name="feed_y_b", shape=[None, 1], dtype="int64", lod_level=0)
        feed_lam = fluid.data(
            name="feed_lam", shape=[None, 1], dtype="float32", lod_level=0)
R
ruri 已提交
393

394
        data_loader = fluid.io.DataLoader.from_generator(
R
ruri 已提交
395
            feed_list=[feed_image, feed_y_a, feed_y_b, feed_lam],
396
            capacity=capacity,
R
ruri 已提交
397
            use_double_buffer=True,
398
            iterable=True)
399
        return data_loader, [feed_image, feed_y_a, feed_y_b, feed_lam]
R
ruri 已提交
400
    else:
401 402 403
        if args.use_dali:
            return None, [feed_image, feed_label]

404
        data_loader = fluid.io.DataLoader.from_generator(
R
ruri 已提交
405
            feed_list=[feed_image, feed_label],
406
            capacity=capacity,
R
ruri 已提交
407
            use_double_buffer=True,
408
            iterable=True)
R
ruri 已提交
409

410
        return data_loader, [feed_image, feed_label]
R
ruri 已提交
411 412


R
ruri 已提交
413 414 415 416 417 418
def print_info(info_mode,
               metrics,
               time_info,
               pass_id=0,
               batch_id=0,
               print_step=1,
419 420
               device_num=1,
               class_dim=5):
R
ruri 已提交
421 422 423 424 425 426 427 428 429 430
    """print function

    Args:
        pass_id: epoch index
        batch_id: batch index
        print_step: the print_step arguments
        metrics: message to print
        time_info: time infomation
        info_mode: mode
    """
R
ruri 已提交
431
    #XXX: Use specific name to choose pattern, not the length of metrics. 
R
ruri 已提交
432 433 434 435 436 437
    if info_mode == "batch":
        if batch_id % print_step == 0:
            #if isinstance(metrics,np.ndarray):
            # train and mixup output
            if len(metrics) == 2:
                loss, lr = metrics
438
                logger.info(
R
ruri 已提交
439 440
                    "[Pass {0}, train batch {1}] \tloss {2}, lr {3}, elapse {4}".
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % lr,
441
                           "%2.4f sec" % time_info))
R
ruri 已提交
442 443 444
            # train and no mixup output
            elif len(metrics) == 4:
                loss, acc1, acc5, lr = metrics
445
                logger.info(
446
                    "[Pass {0}, train batch {1}] \tloss {2}, acc1 {3}, acc{7} {4}, lr {5}, elapse {6}".
R
ruri 已提交
447
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1,
448 449
                           "%.5f" % acc5, "%.5f" % lr, "%2.4f sec" % time_info,
                           min(class_dim, 5)))
R
ruri 已提交
450 451 452
            # test output
            elif len(metrics) == 3:
                loss, acc1, acc5 = metrics
453
                logger.info(
454
                    "[Pass {0}, test  batch {1}] \tloss {2}, acc1 {3}, acc{6} {4}, elapse {5}".
R
ruri 已提交
455
                    format(pass_id, batch_id, "%.5f" % loss, "%.5f" % acc1,
456 457
                           "%.5f" % acc5, "%2.4f sec" % time_info,
                           min(class_dim, 5)))
R
ruri 已提交
458 459 460 461 462 463 464 465 466 467
            else:
                raise Exception(
                    "length of metrics {} is not implemented, It maybe caused by wrong format of build_program_output".
                    format(len(metrics)))
            sys.stdout.flush()

    elif info_mode == "epoch":
        ## TODO add time elapse
        if len(metrics) == 5:
            train_loss, _, test_loss, test_acc1, test_acc5 = metrics
468
            logger.info(
469
                "[End pass {0}]\ttrain_loss {1}, test_loss {2}, test_acc1 {3}, test_acc{5} {4}".
R
ruri 已提交
470
                format(pass_id, "%.5f" % train_loss, "%.5f" % test_loss, "%.5f"
471
                       % test_acc1, "%.5f" % test_acc5, min(class_dim, 5)))
R
ruri 已提交
472 473
        elif len(metrics) == 7:
            train_loss, train_acc1, train_acc5, _, test_loss, test_acc1, test_acc5 = metrics
474
            logger.info(
475
                "[End pass {0}]\ttrain_loss {1}, train_acc1 {2}, train_acc{7} {3},test_loss {4}, test_acc1 {5}, test_acc{7} {6}".
R
ruri 已提交
476 477
                format(pass_id, "%.5f" % train_loss, "%.5f" % train_acc1, "%.5f"
                       % train_acc5, "%.5f" % test_loss, "%.5f" % test_acc1,
478
                       "%.5f" % test_acc5, min(class_dim, 5)))
R
ruri 已提交
479 480
        sys.stdout.flush()
    elif info_mode == "ce":
R
ruri 已提交
481 482 483 484 485 486 487
        assert len(
            metrics
        ) == 7, "Enable CE: The Metrics should contain train_loss, train_acc1, train_acc5, test_loss, test_acc1, test_acc5, and train_speed"
        assert len(
            time_info
        ) > 10, "0~9th batch statistics will drop when doing benchmark or ce, because it might be mixed with startup time, so please make sure training at least 10 batches."
        print_ce(device_num, metrics, time_info)
R
ruri 已提交
488 489 490 491
    else:
        raise Exception("Illegal info_mode")


R
ruri 已提交
492 493 494 495 496 497 498
def print_ce(device_num, metrics, time_info):
    """ Print log for CE(for internal test).
    """
    train_loss, train_acc1, train_acc5, _, test_loss, test_acc1, test_acc5 = metrics

    train_speed = np.mean(np.array(time_info[10:]))

499 500 501 502 503 504 505
    logger.info("kpis\ttrain_cost_card{}\t{}".format(device_num, train_loss))
    logger.info("kpis\ttrain_acc1_card{}\t{}".format(device_num, train_acc1))
    logger.info("kpis\ttrain_acc5_card{}\t{}".format(device_num, train_acc5))
    logger.info("kpis\ttest_cost_card{}\t{}".format(device_num, test_loss))
    logger.info("kpis\ttest_acc1_card{}\t{}".format(device_num, test_acc1))
    logger.info("kpis\ttest_acc5_card{}\t{}".format(device_num, test_acc5))
    logger.info("kpis\ttrain_speed_card{}\t{}".format(device_num, train_speed))
R
ruri 已提交
506 507


508 509 510 511 512 513
def best_strategy_compiled(args,
                           program,
                           loss,
                           exe,
                           mode="train",
                           share_prog=None):
R
ruri 已提交
514 515 516 517 518 519 520 521 522
    """make a program which wrapped by a compiled program
    """

    if os.getenv('FLAGS_use_ngraph'):
        return program
    else:
        build_strategy = fluid.compiler.BuildStrategy()

        exec_strategy = fluid.ExecutionStrategy()
R
ruri 已提交
523 524 525 526

        if args.use_gpu:
            exec_strategy.num_threads = fluid.core.get_cuda_device_count()

R
ruri 已提交
527 528
        exec_strategy.num_iteration_per_drop_scope = 10

529 530 531 532 533 534 535
        num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
        if num_trainers > 1 and args.use_gpu:
            dist_utils.prepare_for_multi_process(exe, build_strategy, program)
            # NOTE: the process is fast when num_threads is 1
            # for multi-process training.
            exec_strategy.num_threads = 1

R
ruri 已提交
536
        compiled_program = fluid.CompiledProgram(program).with_data_parallel(
537
            loss_name=loss.name if mode == "train" else None,
538
            share_vars_from=share_prog if mode == "val" else None,
R
ruri 已提交
539 540 541 542
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)

        return compiled_program
543 544 545


class ExponentialMovingAverage(object):
546 547 548 549 550
    def __init__(self,
                 decay=0.999,
                 thres_steps=None,
                 zero_debias=False,
                 name=None):
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
        self._decay = decay
        self._thres_steps = thres_steps
        self._name = name if name is not None else ''
        self._decay_var = self._get_ema_decay()

        self._params_tmps = []
        for param in default_main_program().global_block().all_parameters():
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
                self._params_tmps.append((param, tmp))

        self._ema_vars = {}
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
570
                [param, tmp]), name_scope('moving_average'):
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                self._ema_vars[param.name] = self._create_ema_vars(param)

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            decay_pow = self._get_decay_pow(block)
            for param, tmp in self._params_tmps:
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
                ema = block._clone_variable(self._ema_vars[param.name])
                layers.assign(input=param, output=tmp)
                # bias correction
                if zero_debias:
                    ema = ema / (1.0 - decay_pow)
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param, tmp in self._params_tmps:
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
        global_steps = layers.learning_rate_scheduler._decay_step_counter()
        decay_var = block._clone_variable(self._decay_var)
        decay_pow_acc = layers.elementwise_pow(decay_var, global_steps + 1)
        return decay_pow_acc

    def _create_ema_vars(self, param):
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

    def update(self):
        """
        Update Exponential Moving Average. Should only call this method in
        train program.
        """
        param_master_emas = []
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
640
                [param, tmp]), name_scope('moving_average'):
641 642 643 644 645 646
                param_ema = self._ema_vars[param.name]
                if param.name + '.master' in self._ema_vars:
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
647
                        1 - self._decay_var)
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })

    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.

        Args:
            executor (Executor): The Executor to execute applying.
            need_restore (bool): Whether to restore parameters after applying.
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.

        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)