data_reader.py 17.8 KB
Newer Older
1
"""This module contains data processing related logic.
Z
zhxfl 已提交
2
"""
3 4 5 6
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
zhxfl 已提交
7 8
import random
import struct
Y
yangyaming 已提交
9 10 11 12
import Queue
import time
import numpy as np
from threading import Thread
Y
yangyaming 已提交
13
import signal
Y
yangyaming 已提交
14
from multiprocessing import Manager, Process
15 16
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
Y
yangyaming 已提交
17
from data_utils.util import suppress_complaints, suppress_signal
18 19 20


class SampleInfo(object):
Y
yangyaming 已提交
21
    """SampleInfo holds the necessary information to load a sample from disk.
22 23 24 25 26 27 28 29 30 31

    Args:
        feature_bin_path (str): File containing the feature data.
        feature_start (int): Start position of the sample's feature data.
        feature_size (int): Byte count of the sample's feature data.
        feature_frame_num (int): Time length of the sample.
        feature_dim (int): Feature dimension of one frame.
        label_bin_path (str): File containing the label data.
        label_size (int): Byte count of the sample's label data. 
        label_frame_num (int): Label number of the sample.
Z
zhxfl 已提交
32 33
    """

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, feature_bin_path, feature_start, feature_size,
                 feature_frame_num, feature_dim, label_bin_path, label_start,
                 label_size, label_frame_num):
        self.feature_bin_path = feature_bin_path
        self.feature_start = feature_start
        self.feature_size = feature_size
        self.feature_frame_num = feature_frame_num
        self.feature_dim = feature_dim

        self.label_bin_path = label_bin_path
        self.label_start = label_start
        self.label_size = label_size
        self.label_frame_num = label_frame_num


class SampleInfoBucket(object):
    """SampleInfoBucket contains paths of several description files. Feature
Y
yangyaming 已提交
51 52 53 54
    description file contains necessary information (including path of binary 
    data, sample start position, sample byte number etc.) to access samples' 
    feature data and the same with the label description file. SampleInfoBucket 
    is the minimum unit to do shuffle.
55 56 57 58 59 60 61 62 63

    Args:
        feature_bin_paths (list|tuple): Files containing the binary feature 
                                        data.
        feature_desc_paths (list|tuple): Files containing the description of 
                                         samples' feature data. 
        label_bin_paths (list|tuple): Files containing the binary label data.
        label_desc_paths (list|tuple): Files containing the description of
                                       samples' label data.
64 65 66
        split_perturb(int): split long sentence' perturb sub-sentence length value. 
        split_sentence_threshold(int): sentence length large than split_sentence_threshold trigger split operator.
        split_sub_sentence_len(int): sub-sentence length is equal to (split_sub_sentence_len + rand() % split_perturb).
Z
zhxfl 已提交
67
    """
68

69 70 71 72 73 74 75 76
    def __init__(self,
                 feature_bin_paths,
                 feature_desc_paths,
                 label_bin_paths,
                 label_desc_paths,
                 split_perturb=50,
                 split_sentence_threshold=512,
                 split_sub_sentence_len=256):
77 78 79 80 81 82 83 84 85 86
        block_num = len(label_bin_paths)
        assert len(label_desc_paths) == block_num
        assert len(feature_bin_paths) == block_num
        assert len(feature_desc_paths) == block_num
        self._block_num = block_num

        self._feature_bin_paths = feature_bin_paths
        self._feature_desc_paths = feature_desc_paths
        self._label_bin_paths = label_bin_paths
        self._label_desc_paths = label_desc_paths
87 88 89
        self._split_perturb = split_perturb
        self._split_sentence_threshold = split_sentence_threshold
        self._split_sub_sentence_len = split_sub_sentence_len
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def generate_sample_info_list(self):
        sample_info_list = []
        for block_idx in xrange(self._block_num):
            label_bin_path = self._label_bin_paths[block_idx]
            label_desc_path = self._label_desc_paths[block_idx]
            feature_bin_path = self._feature_bin_paths[block_idx]
            feature_desc_path = self._feature_desc_paths[block_idx]

            label_desc_lines = open(label_desc_path).readlines()
            feature_desc_lines = open(feature_desc_path).readlines()

            sample_num = int(label_desc_lines[0].split()[1])
            assert sample_num == int(feature_desc_lines[0].split()[1])

            for i in xrange(sample_num):
                feature_desc_split = feature_desc_lines[i + 1].split()
                feature_start = int(feature_desc_split[2])
                feature_size = int(feature_desc_split[3])
                feature_frame_num = int(feature_desc_split[4])
                feature_dim = int(feature_desc_split[5])

                label_desc_split = label_desc_lines[i + 1].split()
                label_start = int(label_desc_split[2])
                label_size = int(label_desc_split[3])
                label_frame_num = int(label_desc_split[4])
Z
zhxfl 已提交
116
                assert feature_frame_num == label_frame_num
117

Z
zhxfl 已提交
118 119 120 121
                if self._split_sentence_threshold == -1 or \
                        self._split_perturb == -1 or \
                        self._split_sub_sentence_len == -1 \
                        or self._split_sentence_threshold >= feature_frame_num:
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
                    sample_info_list.append(
                        SampleInfo(feature_bin_path, feature_start,
                                   feature_size, feature_frame_num, feature_dim,
                                   label_bin_path, label_start, label_size,
                                   label_frame_num))
                #split sentence 
                else:
                    cur_frame_pos = 0
                    cur_frame_len = 0
                    remain_frame_num = feature_frame_num
                    while True:
                        if remain_frame_num > self._split_sentence_threshold:
                            cur_frame_len = self._split_sub_sentence_len + random.randint(
                                0, self._split_perturb)
                            if cur_frame_len > remain_frame_num:
                                cur_frame_len = remain_frame_num
                        else:
                            cur_frame_len = remain_frame_num

                        sample_info_list.append(
                            SampleInfo(
                                feature_bin_path, feature_start + cur_frame_pos
                                * feature_dim * 4, cur_frame_len * feature_dim *
                                4, cur_frame_len, feature_dim, label_bin_path,
                                label_start + cur_frame_pos * 4, cur_frame_len *
                                4, cur_frame_len))

                        remain_frame_num -= cur_frame_len
                        cur_frame_pos += cur_frame_len
                        if remain_frame_num <= 0:
                            break

        print("generate_sample_info_list size ", len(sample_info_list))
155 156 157 158 159 160 161 162 163
        return sample_info_list


class EpochEndSignal():
    pass


class DataReader(object):
    """DataReader provides basic audio sample preprocessing pipeline including
Y
yangyaming 已提交
164
    data loading and data augmentation.
165 166

    Args:
Y
yangyaming 已提交
167 168 169 170 171 172
        feature_file_list (str): File containing paths of feature data file and
                                 corresponding description file.
        label_file_list (str): File containing paths of label data file and 
                               corresponding description file.
        drop_frame_len (int): Samples whose label length above the value will be
                              dropped.
173 174 175 176 177
        process_num (int): Number of processes for processing data.
        sample_buffer_size (int): Buffer size to indicate the maximum samples 
                                  cached.
        sample_info_buffer_size (int): Buffer size to indicate the maximum 
                                       sample information cached.
Y
yangyaming 已提交
178 179
        batch_buffer_size (int): Buffer size to indicate the maximum batch 
                                 cached.
180 181 182
        shuffle_block_num (int): Block number indicating the minimum unit to do 
                                 shuffle.
        random_seed (int): Random seed.
Y
yangyaming 已提交
183 184 185
        verbose (int): If set to 0, complaints including exceptions and signal 
                       traceback from sub-process will be suppressed. If set 
                       to 1, all complaints will be printed.
Z
zhxfl 已提交
186 187
    """

Z
zhxfl 已提交
188 189 190 191 192 193 194 195
    def __init__(self,
                 feature_file_list,
                 label_file_list,
                 drop_frame_len=512,
                 process_num=10,
                 sample_buffer_size=1024,
                 sample_info_buffer_size=1024,
                 batch_buffer_size=1024,
196
                 shuffle_block_num=10,
197 198
                 random_seed=0,
                 verbose=0):
199 200 201 202 203 204 205 206 207 208 209 210
        self._feature_file_list = feature_file_list
        self._label_file_list = label_file_list
        self._drop_frame_len = drop_frame_len
        self._shuffle_block_num = shuffle_block_num
        self._block_info_list = None
        self._rng = random.Random(random_seed)
        self._bucket_list = None
        self.generate_bucket_list(True)
        self._order_id = 0
        self._manager = Manager()
        self._sample_buffer_size = sample_buffer_size
        self._sample_info_buffer_size = sample_info_buffer_size
Y
yangyaming 已提交
211
        self._batch_buffer_size = batch_buffer_size
212
        self._process_num = process_num
213
        self._verbose = verbose
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    def generate_bucket_list(self, is_shuffle):
        if self._block_info_list is None:
            block_feature_info_lines = open(self._feature_file_list).readlines()
            block_label_info_lines = open(self._label_file_list).readlines()
            assert len(block_feature_info_lines) == len(block_label_info_lines)
            self._block_info_list = []
            for i in xrange(0, len(block_feature_info_lines), 2):
                block_info = (block_feature_info_lines[i],
                              block_feature_info_lines[i + 1],
                              block_label_info_lines[i],
                              block_label_info_lines[i + 1])
                self._block_info_list.append(
                    map(lambda line: line.strip(), block_info))

        if is_shuffle:
            self._rng.shuffle(self._block_info_list)

        self._bucket_list = []
        for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
            bucket_block_info = self._block_info_list[i:i +
                                                      self._shuffle_block_num]
            self._bucket_list.append(
                SampleInfoBucket(
                    map(lambda info: info[0], bucket_block_info),
                    map(lambda info: info[1], bucket_block_info),
                    map(lambda info: info[2], bucket_block_info),
                    map(lambda info: info[3], bucket_block_info)))

    # @TODO make this configurable
    def set_transformers(self, transformers):
        self._transformers = transformers

    def _sample_generator(self):
        sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
        sample_queue = self._manager.Queue(self._sample_buffer_size)
        self._order_id = 0

252
        @suppress_complaints(verbose=self._verbose)
Y
yangyaming 已提交
253
        def ordered_feeding_task(sample_info_queue):
254 255 256 257 258 259 260 261 262 263 264 265
            for sample_info_bucket in self._bucket_list:
                sample_info_list = sample_info_bucket.generate_sample_info_list(
                )
                self._rng.shuffle(sample_info_list)  # do shuffle here
                for sample_info in sample_info_list:
                    sample_info_queue.put((sample_info, self._order_id))
                    self._order_id += 1

            for i in xrange(self._process_num):
                sample_info_queue.put(EpochEndSignal())

        feeding_thread = Thread(
Y
yangyaming 已提交
266
            target=ordered_feeding_task, args=(sample_info_queue, ))
267 268 269
        feeding_thread.daemon = True
        feeding_thread.start()

270
        @suppress_complaints(verbose=self._verbose)
Y
yangyaming 已提交
271
        def ordered_processing_task(sample_info_queue, sample_queue, out_order):
Y
yangyaming 已提交
272 273 274 275
            if self._verbose == 0:
                signal.signal(signal.SIGTERM, suppress_signal())
                signal.signal(signal.SIGINT, suppress_signal())

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            def read_bytes(fpath, start, size):
                f = open(fpath, 'r')
                f.seek(start, 0)
                binary_bytes = f.read(size)
                f.close()
                return binary_bytes

            ins = sample_info_queue.get()

            while not isinstance(ins, EpochEndSignal):
                sample_info, order_id = ins

                feature_bytes = read_bytes(sample_info.feature_bin_path,
                                           sample_info.feature_start,
                                           sample_info.feature_size)

Z
zhxfl 已提交
292 293 294 295 296 297
                assert sample_info.feature_frame_num * sample_info.feature_dim * 4 == len(
                    feature_bytes), (sample_info.feature_bin_path,
                                     sample_info.feature_frame_num,
                                     sample_info.feature_dim,
                                     len(feature_bytes))

298 299 300 301
                label_bytes = read_bytes(sample_info.label_bin_path,
                                         sample_info.label_start,
                                         sample_info.label_size)

Z
zhxfl 已提交
302 303 304 305
                assert sample_info.label_frame_num * 4 == len(label_bytes), (
                    sample_info.label_bin_path, sample_info.label_array,
                    len(label_bytes))

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
                label_array = struct.unpack('I' * sample_info.label_frame_num,
                                            label_bytes)
                label_data = np.array(
                    label_array, dtype='int64').reshape(
                        (sample_info.label_frame_num, 1))

                feature_frame_num = sample_info.feature_frame_num
                feature_dim = sample_info.feature_dim
                assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
                feature_array = struct.unpack('f' * feature_frame_num *
                                              feature_dim, feature_bytes)
                feature_data = np.array(
                    feature_array, dtype='float32').reshape((
                        sample_info.feature_frame_num, sample_info.feature_dim))

                sample_data = (feature_data, label_data)
                for transformer in self._transformers:
                    # @TODO(pkuyym) to make transfomer only accept feature_data
                    sample_data = transformer.perform_trans(sample_data)

                while order_id != out_order[0]:
                    time.sleep(0.001)

                # drop long sentence
330 331
                if self._drop_frame_len == -1 or self._drop_frame_len >= sample_data[
                        0].shape[0]:
332 333 334 335 336 337 338 339 340 341 342
                    sample_queue.put(sample_data)

                out_order[0] += 1
                ins = sample_info_queue.get()

            sample_queue.put(EpochEndSignal())

        out_order = self._manager.list([0])
        args = (sample_info_queue, sample_queue, out_order)
        workers = [
            Process(
Y
yangyaming 已提交
343
                target=ordered_processing_task, args=args)
344 345 346 347 348 349 350 351 352 353 354 355
            for _ in xrange(self._process_num)
        ]

        for w in workers:
            w.daemon = True
            w.start()

        finished_process_num = 0
        while finished_process_num < self._process_num:
            sample = sample_queue.get()
            if isinstance(sample, EpochEndSignal):
                finished_process_num += 1
Z
zhxfl 已提交
356
                continue
357 358 359 360 361 362 363
            yield sample

        feeding_thread.join()
        for w in workers:
            w.join()

    def batch_iterator(self, batch_size, minimum_batch_size):
Y
yangyaming 已提交
364
        def batch_to_ndarray(batch_samples, lod):
Z
zhxfl 已提交
365 366 367
            assert len(batch_samples)
            frame_dim = batch_samples[0][0].shape[1]
            batch_feature = np.zeros((lod[-1], frame_dim), dtype="float32")
Y
yangyaming 已提交
368 369 370 371 372 373 374 375 376
            batch_label = np.zeros((lod[-1], 1), dtype="int64")
            start = 0
            for sample in batch_samples:
                frame_num = sample[0].shape[0]
                batch_feature[start:start + frame_num, :] = sample[0]
                batch_label[start:start + frame_num, :] = sample[1]
                start += frame_num
            return (batch_feature, batch_label)

377
        @suppress_complaints(verbose=self._verbose)
Y
yangyaming 已提交
378 379 380 381 382 383 384
        def batch_assembling_task(sample_generator, batch_queue):
            batch_samples = []
            lod = [0]
            for sample in sample_generator():
                batch_samples.append(sample)
                lod.append(lod[-1] + sample[0].shape[0])
                if len(batch_samples) == batch_size:
Y
yangyaming 已提交
385 386
                    (batch_feature, batch_label) = batch_to_ndarray(
                        batch_samples, lod)
Y
yangyaming 已提交
387 388 389 390 391
                    batch_queue.put((batch_feature, batch_label, lod))
                    batch_samples = []
                    lod = [0]

            if len(batch_samples) >= minimum_batch_size:
Y
yangyaming 已提交
392 393
                (batch_feature, batch_label) = batch_to_ndarray(batch_samples,
                                                                lod)
Y
yangyaming 已提交
394 395 396 397 398 399 400 401 402 403 404 405
                batch_queue.put((batch_feature, batch_label, lod))

            batch_queue.put(EpochEndSignal())

        batch_queue = Queue.Queue(self._batch_buffer_size)

        assembling_thread = Thread(
            target=batch_assembling_task,
            args=(self._sample_generator, batch_queue))
        assembling_thread.daemon = True
        assembling_thread.start()

406 407 408 409 410 411 412 413 414
        while True:
            try:
                batch_data = batch_queue.get_nowait()
            except Queue.Empty:
                time.sleep(0.001)
            else:
                if isinstance(batch_data, EpochEndSignal):
                    break
                yield batch_data
Y
yangyaming 已提交
415 416

        assembling_thread.join()