mm_dnn.py 6.3 KB
Newer Older
王肖 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MMDNN class
"""
import numpy as np
import paddle.fluid as fluid
import logging
from paddle.fluid.dygraph import Linear, to_variable, Layer, Pool2D, Conv2D
import paddle_layers as pd_layers
from paddle.fluid import layers


class MMDNN(Layer):
    """
    MMDNN
    """

    def __init__(self, config):
        """
        initialize
        """
        super(MMDNN, self).__init__()

        self.vocab_size = int(config['dict_size'])
        self.emb_size = int(config['net']['embedding_dim'])
        self.lstm_dim = int(config['net']['lstm_dim'])
        self.kernel_size = int(config['net']['num_filters'])
        self.win_size1 = int(config['net']['window_size_left'])
        self.win_size2 = int(config['net']['window_size_right'])
        self.dpool_size1 = int(config['net']['dpool_size_left'])
        self.dpool_size2 = int(config['net']['dpool_size_right'])
        self.hidden_size = int(config['net']['hidden_size'])
    
        self.seq_len1 = 5
        #int(config['max_len_left'])
        self.seq_len2 = 5 #int(config['max_len_right'])
        self.task_mode = config['task_mode']
        self.zero_pad = True
        self.scale = False

        if int(config['match_mask']) != 0:
            self.match_mask = True
        else:
            self.match_mask = False

        if self.task_mode == "pointwise":
            self.n_class = int(config['n_class'])
            self.out_size = self.n_class
        elif self.task_mode == "pairwise":
            self.out_size = 1
        else:
            logging.error("training mode not supported")

        # layers
        self.emb_layer = pd_layers.EmbeddingLayer(self.vocab_size, self.emb_size, 
            name="word_embedding",padding_idx=(0 if self.zero_pad else None)).ops()
        self.fw_in_proj = Linear(
            input_dim=self.emb_size,
            output_dim=4 * self.lstm_dim,
            param_attr=fluid.ParamAttr(name="fw_fc.w"),
            bias_attr=False)
        self.lstm_layer = pd_layers.DynamicLSTMLayer(self.lstm_dim, "lstm").ops()
        self.rv_in_proj = Linear(
            input_dim=self.emb_size,
            output_dim=4 * self.lstm_dim,
            param_attr=fluid.ParamAttr(name="rv_fc.w"),
            bias_attr=False)
        self.reverse_layer = pd_layers.DynamicLSTMLayer(
            self.lstm_dim,
            is_reverse=True).ops()
  
        self.conv = Conv2D(
            num_channels=1,
            num_filters=self.kernel_size,
            stride=1,
            padding=(int(self.seq_len1 / 2), int(self.seq_len2 // 2)),
            filter_size=(self.seq_len1, self.seq_len2),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(0.1)))
     
        self.pool_layer = Pool2D(
            pool_size=[
                int(self.seq_len1 / self.dpool_size1),
                int(self.seq_len2 / self.dpool_size2)
            ],
            pool_stride=[
                int(self.seq_len1 / self.dpool_size1),
                int(self.seq_len2 / self.dpool_size2)
            ],
            pool_type="max" )
        self.fc_layer = pd_layers.FCLayer(self.hidden_size, "tanh", "fc").ops()
        self.fc1_layer = pd_layers.FCLayer(self.out_size, "softmax", "fc1").ops()
        


    def forward(self, left, right):
        """
        Forward network
        """
        left_emb = self.emb_layer(left)
        right_emb = self.emb_layer(right)
        if self.scale:
            left_emb = left_emb * (self.emb_size**0.5)
            right_emb = right_emb * (self.emb_size**0.5)

        # bi_listm
        left_proj = self.fw_in_proj(left_emb)
        right_proj = self.fw_in_proj(right_emb)

        left_lstm, _ = self.lstm_layer(left_proj)
        right_lstm, _ = self.lstm_layer(right_proj)
        left_rv_proj = self.rv_in_proj(left_lstm)
        right_rv_proj = self.rv_in_proj(right_lstm)
        left_reverse,_ = self.reverse_layer(left_rv_proj)
        right_reverse,_ = self.reverse_layer(right_rv_proj)
   
        left_seq_encoder = fluid.layers.concat([left_lstm, left_reverse], axis=1)
        right_seq_encoder = fluid.layers.concat([right_lstm, right_reverse], axis=1)
  
        pad_value = fluid.layers.assign(input=np.array([0]).astype("float32"))
 
        left_seq_encoder = fluid.layers.reshape(left_seq_encoder, shape=[left_seq_encoder.shape[0]/5,5,-1])
        right_seq_encoder = fluid.layers.reshape(right_seq_encoder, shape=[right_seq_encoder.shape[0]/5,5,-1])
        cross = fluid.layers.matmul(
            left_seq_encoder, right_seq_encoder, transpose_y=True)
  
        left_lens=to_variable(np.array([5]))
        right_lens=to_variable(np.array([5]))

        if self.match_mask:
            mask1 = fluid.layers.sequence_mask(
                x=left_lens, dtype='float32', maxlen=self.seq_len1 + 1)
            mask2 = fluid.layers.sequence_mask(
                x=right_lens, dtype='float32', maxlen=self.seq_len2 + 1)
         
            mask1 = fluid.layers.transpose(x=mask1, perm=[1, 0])
            mask = fluid.layers.matmul(x=mask1, y=mask2)
        else:
            mask = None

        # conv_pool_relu
        emb_expand = fluid.layers.unsqueeze(input=cross, axes=[1])

        conv = self.conv(emb_expand)
        if mask is not None:
            cross_mask = fluid.layers.stack(x=[mask] * self.kernel_size, axis=0)
            cross_mask = fluid.layers.stack(x=[cross] * conv.shape[1], axis=1)
            conv = cross_mask * conv + (1 - cross_mask) * (-2**5 + 1)
        pool = self.pool_layer(conv)
        conv_pool_relu = fluid.layers.relu(pool)

        relu_hid1 = self.fc_layer(conv_pool_relu)
        relu_hid1 = fluid.layers.tanh(relu_hid1)

        pred = self.fc1_layer(relu_hid1)
        pred = fluid.layers.softmax(pred)
        return left_seq_encoder, pred