run_ernie_classifier.py 15.6 KB
Newer Older
L
Li Fuchen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

Y
Yibing Liu 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
"""
Emotion Detection Task, based on ERNIE
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import argparse
import multiprocessing
import sys
sys.path.append("../")

import paddle
import paddle.fluid as fluid
import numpy as np

from preprocess.ernie import task_reader
from models.representation import ernie
36
from models.model_check import check_cuda
Y
Yibing Liu 已提交
37
import utils
38
import config
Y
Yibing Liu 已提交
39 40 41

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
42
model_g = config.ArgumentGroup(parser, "model", "model configuration and paths.")
Y
Yibing Liu 已提交
43 44
model_g.add_arg("ernie_config_path", str, None, "Path to the json file for ernie model config.")
model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
45
model_g.add_arg("save_checkpoint_dir", str, "checkpoints", "Path to save checkpoints")
46
model_g.add_arg("use_paddle_hub", bool, False, "Whether to load ERNIE using PaddleHub")
Y
Yibing Liu 已提交
47

48
train_g = config.ArgumentGroup(parser, "training", "training options.")
Y
Yibing Liu 已提交
49 50 51 52 53
train_g.add_arg("epoch", int, 10, "Number of epoches for training.")
train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.")
train_g.add_arg("lr", float, 0.002, "The Learning rate value for training.")

54
log_g = config.ArgumentGroup(parser, "logging", "logging related")
Y
Yibing Liu 已提交
55 56 57
log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
log_g.add_arg("verbose", bool, False, "Whether to output verbose log")

58
data_g = config.ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
Y
Yibing Liu 已提交
59 60 61 62
data_g.add_arg("data_dir", str, None, "Directory path to training data.")
data_g.add_arg("vocab_path", str, None, "Vocabulary path.")
data_g.add_arg("batch_size", int, 256, "Total examples' number in batch for training.")
data_g.add_arg("random_seed", int, 0, "Random seed.")
W
wuzewu 已提交
63
data_g.add_arg("num_labels", int, 3, "label number")
Y
Yibing Liu 已提交
64 65 66 67 68 69 70 71 72
data_g.add_arg("max_seq_len", int, 512, "Number of words of the longest seqence.")
data_g.add_arg("train_set", str, None, "Path to training data.")
data_g.add_arg("test_set", str, None, "Path to test data.")
data_g.add_arg("dev_set", str, None, "Path to validation data.")
data_g.add_arg("infer_set", str, None, "Path to validation data.")
data_g.add_arg("label_map_config", str, None, "label_map_path.")
data_g.add_arg("do_lower_case", bool, True,
               "Whether to lower case the input text. Should be True for uncased models and False for cased models.")

73
run_type_g = config.ArgumentGroup(parser, "run_type", "running type options.")
Y
Yibing Liu 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
run_type_g.add_arg("use_cuda", bool, False, "If set, use GPU for training.")
run_type_g.add_arg("task_name", str, None, "The name of task to perform sentiment classification.")
run_type_g.add_arg("do_train", bool, False, "Whether to perform training.")
run_type_g.add_arg("do_val", bool, False, "Whether to perform evaluation.")
run_type_g.add_arg("do_infer", bool, False, "Whether to perform inference.")

args = parser.parse_args()
# yapf: enable.

def create_model(args,
                 embeddings,
                 labels,
                 is_prediction=False):

    """
    Create Model for sentiment classification based on ERNIE encoder
    """
    sentence_embeddings = embeddings["sentence_embeddings"]
    token_embeddings = embeddings["token_embeddings"]

    cls_feats = fluid.layers.dropout(
        x=sentence_embeddings,
        dropout_prob=0.1,
        dropout_implementation="upscale_in_train")
    logits = fluid.layers.fc(
        input=cls_feats,
        size=args.num_labels,
        param_attr=fluid.ParamAttr(
            name="cls_out_w",
            initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
        bias_attr=fluid.ParamAttr(
            name="cls_out_b", initializer=fluid.initializer.Constant(0.)))

    ce_loss, probs = fluid.layers.softmax_with_cross_entropy(
        logits=logits, label=labels, return_softmax=True)
    if is_prediction:
        return probs
    loss = fluid.layers.mean(x=ce_loss)

    num_seqs = fluid.layers.create_tensor(dtype='int64')
    accuracy = fluid.layers.accuracy(input=probs, label=labels, total=num_seqs)

    return loss, accuracy, num_seqs


def evaluate(exe, test_program, test_pyreader, fetch_list, eval_phase):
    """
    Evaluation Function
    """
    test_pyreader.start()
    total_cost, total_acc, total_num_seqs = [], [], []
    time_begin = time.time()
    while True:
        try:
            np_loss, np_acc, np_num_seqs = exe.run(program=test_program,
                                                   fetch_list=fetch_list,
                                                   return_numpy=False)
            np_loss = np.array(np_loss)
            np_acc = np.array(np_acc)
            np_num_seqs = np.array(np_num_seqs)
            total_cost.extend(np_loss * np_num_seqs)
            total_acc.extend(np_acc * np_num_seqs)
            total_num_seqs.extend(np_num_seqs)
        except fluid.core.EOFException:
            test_pyreader.reset()
            break
    time_end = time.time()
    print("[%s evaluation] avg loss: %f, ave acc: %f, elapsed time: %f s" %
        (eval_phase, np.sum(total_cost) / np.sum(total_num_seqs),
        np.sum(total_acc) / np.sum(total_num_seqs), time_end - time_begin))


def infer(exe, infer_program, infer_pyreader, fetch_list, infer_phase):
    """Infer"""
    infer_pyreader.start()
    time_begin = time.time()
    while True:
        try:
            batch_probs = exe.run(program=infer_program, fetch_list=fetch_list,
                                return_numpy=True)
            for probs in batch_probs[0]:
                print("%d\t%f\t%f\t%f" % (np.argmax(probs), probs[0], probs[1], probs[2]))
        except fluid.core.EOFException:
            infer_pyreader.reset()
            break
    time_end = time.time()
    print("[%s] elapsed time: %f s" % (infer_phase, time_end - time_begin))


def main(args):
    """
    Main Function
    """
    args = parser.parse_args()
    ernie_config = ernie.ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()

    if args.use_cuda:
        place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0')))
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)

    reader = task_reader.ClassifyReader(
        vocab_path=args.vocab_path,
        label_map_config=args.label_map_config,
        max_seq_len=args.max_seq_len,
        do_lower_case=args.do_lower_case,
        random_seed=args.random_seed)

    if not (args.do_train or args.do_val or args.do_infer):
        raise ValueError("For args `do_train`, `do_val` and `do_infer`, at "
                         "least one of them must be True.")

    startup_prog = fluid.Program()
    if args.random_seed is not None:
        startup_prog.random_seed = args.random_seed

    if args.do_train:
        train_data_generator = reader.data_generator(
            input_file=args.train_set,
            batch_size=args.batch_size,
            epoch=args.epoch,
            shuffle=True,
            phase="train")

        num_train_examples = reader.get_num_examples(args.train_set)

        max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count + 1

        print("Device count: %d" % dev_count)
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)

        train_program = fluid.Program()

        with fluid.program_guard(train_program, startup_prog):
            with fluid.unique_name.guard():
                # create ernie_pyreader
                train_pyreader, ernie_inputs, labels = ernie.ernie_pyreader(
                    args,
                    pyreader_name='train_reader')

                # get ernie_embeddings
220 221 222 223
                if args.use_paddle_hub:
                    embeddings = ernie.ernie_encoder_with_paddle_hub(ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie.ernie_encoder(ernie_inputs, ernie_config=ernie_config)
Y
Yibing Liu 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

                # user defined model based on ernie embeddings
                loss, accuracy, num_seqs = create_model(
                args,
                embeddings,
                labels=labels,
                is_prediction=False)

                """
                sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=args.lr)
                sgd_optimizer.minimize(loss)
                """
                optimizer = fluid.optimizer.Adam(learning_rate=args.lr)
                optimizer.minimize(loss)

        if args.verbose:
            lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
                program=train_program, batch_size=args.batch_size)
            print("Theoretical memory usage in training: %.3f - %.3f %s" %
                (lower_mem, upper_mem, unit))

    if args.do_val:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                # create ernie_pyreader
                test_pyreader, ernie_inputs, labels = ernie.ernie_pyreader(
                    args,
                    pyreader_name='eval_reader')

                # get ernie_embeddings
255 256 257 258
                if args.use_paddle_hub:
                    embeddings = ernie.ernie_encoder_with_paddle_hub(ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie.ernie_encoder(ernie_inputs, ernie_config=ernie_config)
Y
Yibing Liu 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

                # user defined model based on ernie embeddings
                loss, accuracy, num_seqs = create_model(
                args,
                embeddings,
                labels=labels,
                is_prediction=False)

        test_prog = test_prog.clone(for_test=True)

    if args.do_infer:
        test_prog = fluid.Program()
        with fluid.program_guard(test_prog, startup_prog):
            with fluid.unique_name.guard():
                infer_pyreader, ernie_inputs, labels = ernie.ernie_pyreader(
                    args,
                    pyreader_name='infer_reader')

                # get ernie_embeddings
278 279 280 281
                if args.use_paddle_hub:
                    embeddings = ernie.ernie_encoder_with_paddle_hub(ernie_inputs, args.max_seq_len)
                else:
                    embeddings = ernie.ernie_encoder(ernie_inputs, ernie_config=ernie_config)
Y
Yibing Liu 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295

                probs = create_model(args,
                                    embeddings,
                                    labels=labels,
                                    is_prediction=True)
        test_prog = test_prog.clone(for_test=True)

    exe.run(startup_prog)

    if args.do_train:
        if args.init_checkpoint:
            utils.init_checkpoint(
                exe,
                args.init_checkpoint,
296
                main_program=train_program)
Y
Yibing Liu 已提交
297 298 299 300 301 302 303 304 305 306 307
    elif args.do_val or args.do_infer:
        if not args.init_checkpoint:
            raise ValueError("args 'init_checkpoint' should be set if"
                             "only doing validation or infer!")
        utils.init_checkpoint(
            exe,
            args.init_checkpoint,
            main_program=test_prog)

    if args.do_train:
        train_exe = exe
308
        train_pyreader.set_batch_generator(train_data_generator)
Y
Yibing Liu 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    else:
        train_exe = None
    if args.do_val or args.do_infer:
        test_exe = exe

    if args.do_train:
        train_pyreader.start()
        steps = 0
        total_cost, total_acc, total_num_seqs = [], [], []
        time_begin = time.time()
        while True:
            try:
                steps += 1
                if steps % args.skip_steps == 0:
                    fetch_list = [loss.name, accuracy.name, num_seqs.name]
                else:
                    fetch_list = []

                outputs = train_exe.run(program=train_program, fetch_list=fetch_list, return_numpy=False)
                if steps % args.skip_steps == 0:
                    np_loss, np_acc, np_num_seqs = outputs
                    np_loss = np.array(np_loss)
                    np_acc = np.array(np_acc)
                    np_num_seqs = np.array(np_num_seqs)
                    total_cost.extend(np_loss * np_num_seqs)
                    total_acc.extend(np_acc * np_num_seqs)
                    total_num_seqs.extend(np_num_seqs)

                    if args.verbose:
                        verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size()
                        print(verbose)

                    time_end = time.time()
                    used_time = time_end - time_begin
                    print("step: %d, avg loss: %f, "
                        "avg acc: %f, speed: %f steps/s" %
                        (steps, np.sum(total_cost) / np.sum(total_num_seqs),
                        np.sum(total_acc) / np.sum(total_num_seqs),
                        args.skip_steps / used_time))
                    total_cost, total_acc, total_num_seqs = [], [], []
                    time_begin = time.time()

                if steps % args.save_steps == 0:
352
                    save_path = os.path.join(args.save_checkpoint_dir, "step_" + str(steps))
Y
Yibing Liu 已提交
353 354 355 356 357
                    fluid.io.save_persistables(exe, save_path, train_program)

                if steps % args.validation_steps == 0:
                    # evaluate dev set
                    if args.do_val:
358
                        test_pyreader.set_batch_generator(
Y
Yibing Liu 已提交
359 360 361 362 363 364 365 366 367 368 369 370
                            reader.data_generator(
                                input_file=args.dev_set,
                                batch_size=args.batch_size,
                                phase='dev',
                                epoch=1,
                                shuffle=False))

                        evaluate(exe, test_prog, test_pyreader,
                                [loss.name, accuracy.name, num_seqs.name],
                                "dev")

            except fluid.core.EOFException:
371
                save_path = os.path.join(args.save_checkpoint_dir, "step_" + str(steps))
Y
Yibing Liu 已提交
372 373 374 375 376 377
                fluid.io.save_persistables(exe, save_path, train_program)
                train_pyreader.reset()
                break

    # eval on test set
    if not args.do_train and args.do_val:
378
        test_pyreader.set_batch_generator(
Y
Yibing Liu 已提交
379 380 381 382 383 384 385 386 387 388
            reader.data_generator(
                input_file=args.test_set,
                batch_size=args.batch_size, phase='test', epoch=1,
                shuffle=False))
        print("Final validation result:")
        evaluate(exe, test_prog, test_pyreader,
            [loss.name, accuracy.name, num_seqs.name], "test")

    # infer on infer set
    if args.do_infer:
389
        infer_pyreader.set_batch_generator(
Y
Yibing Liu 已提交
390 391 392 393 394 395 396 397 398 399 400 401
            reader.data_generator(
                input_file=args.infer_set,
                batch_size=args.batch_size,
                phase='infer',
                epoch=1,
                shuffle=False))
        print("Final test result:")
        infer(exe, test_prog, infer_pyreader,
            [probs.name], "infer")

if __name__ == "__main__":
    utils.print_arguments(args)
402
    check_cuda(args.use_cuda)
Y
Yibing Liu 已提交
403
    main(args)