reader.py 8.3 KB
Newer Older
X
Xing Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The file_reader converts raw corpus to input.
"""

import os
import argparse
import __future__
import io
import glob
import paddle.fluid as fluid


def load_kv_dict(dict_path,
                 reverse=False,
                 delimiter="\t",
                 key_func=None,
                 value_func=None):
    """
    Load key-value dict from file
    """
    result_dict = {}
    for line in io.open(dict_path, "r", encoding='utf8'):
        terms = line.strip("\n").split(delimiter)
        if len(terms) != 2:
            continue
        if reverse:
            value, key = terms
        else:
            key, value = terms
        if key in result_dict:
            raise KeyError("key duplicated with [%s]" % (key))
        if key_func:
            key = key_func(key)
        if value_func:
            value = value_func(value)
        result_dict[key] = value
    return result_dict


class Dataset(object):
    """data reader"""

    def __init__(self, args, mode="train"):
        # read dict
        self.word2id_dict = load_kv_dict(
            args.word_dict_path, reverse=True, value_func=int)
        self.id2word_dict = load_kv_dict(args.word_dict_path)
        self.label2id_dict = load_kv_dict(
            args.label_dict_path, reverse=True, value_func=int)
        self.id2label_dict = load_kv_dict(args.label_dict_path)
        self.word_replace_dict = load_kv_dict(args.word_rep_dict_path)

    @property
    def vocab_size(self):
        """vocabuary size"""
        return max(self.word2id_dict.values()) + 1

    @property
    def num_labels(self):
        """num_labels"""
        return max(self.label2id_dict.values()) + 1

    def get_num_examples(self, filename):
        """num of line of file"""
        return sum(1 for line in io.open(filename, "r", encoding='utf8'))

    def word_to_ids(self, words):
        """convert word to word index"""
        word_ids = []
        for word in words:
            word = self.word_replace_dict.get(word, word)
            if word not in self.word2id_dict:
                word = "OOV"
            word_id = self.word2id_dict[word]
            word_ids.append(word_id)

        return word_ids

    def label_to_ids(self, labels):
        """convert label to label index"""
        label_ids = []
        for label in labels:
            if label not in self.label2id_dict:
                label = "O"
            label_id = self.label2id_dict[label]
            label_ids.append(label_id)
        return label_ids

    def file_reader(self, filename, batch_size=32, _max_seq_len=64, mode="train"):
        """
        yield (word_idx, target_idx) one by one from file,
            or yield (word_idx, ) in `infer` mode
        """
        def wrapper():
            fread = io.open(filename, "r", encoding="utf-8")
            if mode == "infer":
                batch, init_lens = [], []
                for line in fread:
                    words= line.strip()
                    word_ids = self.word_to_ids(words)
                    init_lens.append(len(word_ids))
                    batch.append(word_ids)
                    if len(batch) == batch_size:
                        max_seq_len = min(max(init_lens), _max_seq_len)
                        new_batch = []
                        for words_len, words in zip(init_lens, batch):
                            word_ids = words[0:max_seq_len]
                            words_len = len(word_ids)
                            # expand to max_seq_len
                            word_ids += [0 for _ in range(max_seq_len-words_len)]
                            new_batch.append((word_ids,words_len))
                        yield new_batch
                        batch, init_lens = [], []
                if len(batch) > 0:
                    max_seq_len = min(max(init_lens), max_seq_len)
                    new_batch = []
                    for words_len, words in zip(init_lens, batch):
                        word_ids = word_ids[0:max_seq_len]
                        words_len = len(word_ids)
                        # expand to max_seq_len
                        word_ids += [0 for _ in range(max_seq_len-words_len)]
                        new_batch.append((word_ids,words_len))
                    yield new_batch
            else:
                headline = next(fread)
                batch, init_lens = [], []
                for line in fread:
                    words, labels = line.strip("\n").split("\t")
                    if len(words)<1:
                        continue
                    word_ids = self.word_to_ids(words.split("\002"))
                    label_ids = self.label_to_ids(labels.split("\002"))
                    init_lens.append(len(word_ids))
                    batch.append((word_ids, label_ids))
                    if len(batch) == batch_size:
                        max_seq_len = min(max(init_lens), _max_seq_len)
                        new_batch = []
                        for words_len, (word_ids, label_ids) in zip(init_lens, batch):
                            word_ids = word_ids[0:max_seq_len]
                            words_len = len(word_ids)
                            word_ids += [0 for _ in range(max_seq_len-words_len)]
                            label_ids = label_ids[0:max_seq_len]
                            label_ids += [0 for _ in range(max_seq_len-words_len)]
                            assert len(word_ids) == len(label_ids)
                            new_batch.append((word_ids, label_ids, words_len))
                        yield new_batch
                        batch, init_lens = [], []
                if len(batch) == batch_size:
                    max_seq_len = min(max(init_lens), max_seq_len)
                    new_batch = []
                    for words_len, (word_ids, label_ids) in zip(init_lens, batch):
                        max_seq_len = min(max(init_lens), max_seq_len)
                        word_ids = words[0:max_seq_len]
                        words_len = len(word_ids)
                        word_ids += [0 for _ in range(max_seq_len-words_len)]
                        label_ids = label_ids[0:max_seq_len]
                        label_ids += [0 for _ in range(max_seq_len-words_len)]
                        assert len(word_ids) == len(label_ids)
                        new_batch.append((word_ids, label_ids, words_len))
                    yield new_batch
            fread.close()

        return wrapper

def create_dataloader(args,
                    file_name,
                    place,
                    model='lac',
                    reader=None,
                    return_reader=False,
                    mode='train'):
    # init reader

    if model == 'lac':
        data_loader = fluid.io.DataLoader.from_generator(
            capacity=50,
            use_double_buffer=True,
            iterable=True)

        if reader == None:
            reader = Dataset(args)

        # create lac pyreader
        if mode == 'train':
            #data_loader.set_sample_list_generator(
            #    fluid.io.batch(
            #        fluid.io.shuffle(
            #            reader.file_reader(file_name),
            #            buf_size=args.traindata_shuffle_buffer),
            #        batch_size=args.batch_size),
            #    places=place)
            data_loader.set_sample_list_generator(
                    reader.file_reader(
                        file_name, batch_size=args.batch_size, _max_seq_len=64, mode=mode),
                places=place)
        else:
           data_loader.set_sample_list_generator(
                    reader.file_reader(
                        file_name, batch_size=args.batch_size, _max_seq_len=64, mode=mode),
                places=place)
                
    if return_reader:
        return data_loader, reader
    else:
        return data_loader