train.py 15.8 KB
Newer Older
R
root 已提交
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
4 5 6 7
import os
import numpy as np
import time
import sys
R
root 已提交
8 9
import functools
import math
10
import paddle
11
import paddle.fluid as fluid
12
import paddle.dataset.flowers as flowers
13
import models
14 15
import reader
import argparse
R
ruri 已提交
16 17 18 19
import functools
import subprocess
import utils
from utils.learning_rate import cosine_decay
T
typhoonzero 已提交
20
from utils.fp16_utils import create_master_params_grads, master_param_to_train_param
21
from utility import add_arguments, print_arguments
R
ruri 已提交
22 23
import models
import models_name
24 25 26

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
27 28 29 30 31 32 33 34 35 36 37 38 39 40
# yapf: disable
add_arg('batch_size',       int,   256,                  "Minibatch size.")
add_arg('use_gpu',          bool,  True,                 "Whether to use GPU or not.")
add_arg('total_images',     int,   1281167,              "Training image number.")
add_arg('num_epochs',       int,   120,                  "number of epochs.")
add_arg('class_dim',        int,   1000,                 "Class number.")
add_arg('image_shape',      str,   "3,224,224",          "input image size")
add_arg('model_save_dir',   str,   "output",             "model save directory")
add_arg('with_mem_opt',     bool,  True,                 "Whether to use memory optimization or not.")
add_arg('pretrained_model', str,   None,                 "Whether to use pretrained model.")
add_arg('checkpoint',       str,   None,                 "Whether to resume checkpoint.")
add_arg('lr',               float, 0.1,                  "set learning rate.")
add_arg('lr_strategy',      str,   "piecewise_decay",    "Set the learning rate decay strategy.")
add_arg('model',            str,   "SE_ResNeXt50_32x4d", "Set the network to use.")
41
add_arg('enable_ce',        bool,  False,                "If set True, enable continuous evaluation job.")
M
minqiyang 已提交
42
add_arg('data_dir',         str,   "./data/ILSVRC2012",  "The ImageNet dataset root dir.")
R
ruri 已提交
43
add_arg('model_category',   str,   "models",             "Whether to use models_name or not, valid value:'models','models_name'" )
T
typhoonzero 已提交
44
add_arg('fp16',             bool,  False,                "Enable half precision training with fp16." )
T
update  
typhoonzero 已提交
45
add_arg('scale_loss',       float, 1.0,                  "Scale loss for fp16." )
T
typhoonzero 已提交
46
# yapf: enable
47

R
ruri 已提交
48 49 50 51 52 53 54

def set_models(model):
    global models
    if model == "models":
        models = models
    else:
        models = models_name
55 56 57 58 59 60 61


def optimizer_setting(params):
    ls = params["learning_strategy"]
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
            total_images = 1281167
Y
Yibing Liu 已提交
62
        else:
63 64 65
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)
D
Dang Qingqing 已提交
66

67 68 69 70
        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
71
        optimizer = fluid.optimizer.Momentum(
72 73 74 75
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
R
ruri 已提交
76

77 78 79 80 81 82 83 84 85 86 87 88
    elif ls["name"] == "cosine_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]

        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

        lr = params["lr"]
        num_epochs = params["num_epochs"]

89 90
        optimizer = fluid.optimizer.Momentum(
            learning_rate=cosine_decay(
91
                learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
92
            momentum=0.9,
R
ruri 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            regularization=fluid.regularizer.L2Decay(4e-5))
    elif ls["name"] == "exponential_decay":
        if "total_images" not in params:
            total_images = 1281167
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size +1)
        lr = params["lr"]
        num_epochs = params["num_epochs"]
        learning_decay_rate_factor=ls["learning_decay_rate_factor"]
        num_epochs_per_decay = ls["num_epochs_per_decay"]
        NUM_GPUS = 1

        optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate = lr * NUM_GPUS,
                decay_steps = step * num_epochs_per_decay / NUM_GPUS,
                decay_rate = learning_decay_rate_factor),
            momentum=0.9,

            regularization = fluid.regularizer.L2Decay(4e-5))

116
    else:
117
        lr = params["lr"]
118
        optimizer = fluid.optimizer.Momentum(
119
            learning_rate=lr,
120 121 122
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))

123
    return optimizer
124

R
ruri 已提交
125 126 127 128
def net_config(image, label, model, args):
    model_list = [m for m in dir(models) if "__" not in m]
    assert args.model in model_list,"{} is not lists: {}".format(
        args.model, model_list)
129

130 131 132
    class_dim = args.class_dim
    model_name = args.model

133 134
    if args.enable_ce:
        assert model_name == "SE_ResNeXt50_32x4d"
D
Dang Qingqing 已提交
135
        model.params["dropout_seed"] = 100
R
root 已提交
136
        class_dim = 102
137

R
root 已提交
138
    if model_name == "GoogleNet":
139 140 141 142 143 144 145 146 147 148 149
        out0, out1, out2 = model.net(input=image, class_dim=class_dim)
        cost0 = fluid.layers.cross_entropy(input=out0, label=label)
        cost1 = fluid.layers.cross_entropy(input=out1, label=label)
        cost2 = fluid.layers.cross_entropy(input=out2, label=label)
        avg_cost0 = fluid.layers.mean(x=cost0)
        avg_cost1 = fluid.layers.mean(x=cost1)
        avg_cost2 = fluid.layers.mean(x=cost2)

        avg_cost = avg_cost0 + 0.3 * avg_cost1 + 0.3 * avg_cost2
        acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
Y
Yibing Liu 已提交
150
    else:
T
update  
typhoonzero 已提交
151 152
        out = model.net(input=image, class_dim=class_dim)    
        cost, pred = fluid.layers.softmax_with_cross_entropy(out, label, return_softmax=True) 
T
typhoonzero 已提交
153
        if args.scale_loss > 1:
T
update  
typhoonzero 已提交
154
            avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
T
typhoonzero 已提交
155
        else:
T
update  
typhoonzero 已提交
156
            avg_cost = fluid.layers.mean(x=cost)
157

T
update  
typhoonzero 已提交
158 159
        acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
160

R
ruri 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
    return avg_cost, acc_top1, acc_top5


def build_program(is_train, main_prog, startup_prog, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    model_name = args.model
    model_list = [m for m in dir(models) if "__" not in m]
    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
    model = models.__dict__[model_name]()
    with fluid.program_guard(main_prog, startup_prog):
        py_reader = fluid.layers.py_reader(
            capacity=16,
            shapes=[[-1] + image_shape, [-1, 1]],
            lod_levels=[0, 0],
            dtypes=["float32", "int64"],
            use_double_buffer=True)
        with fluid.unique_name.guard():
            image, label = fluid.layers.read_file(py_reader)
T
typhoonzero 已提交
180
            if args.fp16:
T
update  
typhoonzero 已提交
181
                image = fluid.layers.cast(image, "float16")
R
ruri 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
            avg_cost, acc_top1, acc_top5 = net_config(image, label, model, args)
            avg_cost.persistable = True
            acc_top1.persistable = True
            acc_top5.persistable = True
            if is_train:
                params = model.params
                params["total_images"] = args.total_images
                params["lr"] = args.lr
                params["num_epochs"] = args.num_epochs
                params["learning_strategy"]["batch_size"] = args.batch_size
                params["learning_strategy"]["name"] = args.lr_strategy

                optimizer = optimizer_setting(params)
T
typhoonzero 已提交
195 196

                if args.fp16:
T
typhoonzero 已提交
197
                    params_grads = optimizer.backward(avg_cost)
T
typhoonzero 已提交
198 199
                    master_params_grads = create_master_params_grads(
                        params_grads, main_prog, startup_prog, args.scale_loss)
T
update  
typhoonzero 已提交
200
                    optimizer.apply_gradients(master_params_grads)
T
typhoonzero 已提交
201
                    master_param_to_train_param(master_params_grads, params_grads, main_prog)
T
typhoonzero 已提交
202 203
                else:
                    optimizer.minimize(avg_cost)
R
ruri 已提交
204 205 206 207 208 209 210 211 212 213 214

    return py_reader, avg_cost, acc_top1, acc_top5


def train(args):
    # parameters from arguments
    model_name = args.model
    checkpoint = args.checkpoint
    pretrained_model = args.pretrained_model
    with_memory_optimization = args.with_mem_opt
    model_save_dir = args.model_save_dir
215

R
ruri 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    test_prog = fluid.Program()
    if args.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000

    train_py_reader, train_cost, train_acc1, train_acc5 = build_program(
        is_train=True,
        main_prog=train_prog,
        startup_prog=startup_prog,
        args=args)
    test_py_reader, test_cost, test_acc1, test_acc5 = build_program(
        is_train=False,
        main_prog=test_prog,
        startup_prog=startup_prog,
        args=args)
    test_prog = test_prog.clone(for_test=True)
234

235
    if with_memory_optimization:
R
ruri 已提交
236 237
        fluid.memory_optimize(train_prog)
        fluid.memory_optimize(test_prog)
238

239
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
240
    exe = fluid.Executor(place)
R
ruri 已提交
241
    exe.run(startup_prog)
242

243
    if checkpoint is not None:
R
ruri 已提交
244
        fluid.io.load_persistables(exe, checkpoint, main_program=train_prog)
245

246 247 248 249 250
    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

R
ruri 已提交
251 252
        fluid.io.load_vars(
            exe, pretrained_model, main_program=train_prog, predicate=if_exist)
253

R
ruri 已提交
254 255 256 257
    visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
    if visible_device:
        device_num = len(visible_device.split(','))
    else:
R
ruri 已提交
258
        device_num = subprocess.check_output(['nvidia-smi', '-L']).decode().count('\n')
259

R
ruri 已提交
260
    train_batch_size = args.batch_size / device_num
K
kolinwei 已提交
261
    test_batch_size = 16
262
    if not args.enable_ce:
R
ruri 已提交
263 264
        train_reader = paddle.batch(
            reader.train(), batch_size=train_batch_size, drop_last=True)
265 266 267 268 269 270
        test_reader = paddle.batch(reader.val(), batch_size=test_batch_size)
    else:
        # use flowers dataset for CE and set use_xmap False to avoid disorder data
        # but it is time consuming. For faster speed, need another dataset.
        import random
        random.seed(0)
D
Dang Qingqing 已提交
271
        np.random.seed(0)
272
        train_reader = paddle.batch(
R
ruri 已提交
273 274 275
            flowers.train(use_xmap=False),
            batch_size=train_batch_size,
            drop_last=True)
276 277 278
        test_reader = paddle.batch(
            flowers.test(use_xmap=False), batch_size=test_batch_size)

R
ruri 已提交
279 280
    train_py_reader.decorate_paddle_reader(train_reader)
    test_py_reader.decorate_paddle_reader(test_reader)
L
Luo Tao 已提交
281
    train_exe = fluid.ParallelExecutor(
R
ruri 已提交
282 283 284 285 286 287
        main_program=train_prog,
        use_cuda=bool(args.use_gpu),
        loss_name=train_cost.name)

    train_fetch_list = [train_cost.name, train_acc1.name, train_acc5.name]
    test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name]
288

R
ruri 已提交
289
    params = models.__dict__[args.model]().params
290

291
    for pass_id in range(params["num_epochs"]):
R
ruri 已提交
292 293 294

        train_py_reader.start()

295 296
        train_info = [[], [], []]
        test_info = [[], [], []]
297
        train_time = []
R
ruri 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc1, acc5 = train_exe.run(fetch_list=train_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(np.array(loss))
                acc1 = np.mean(np.array(acc1))
                acc5 = np.mean(np.array(acc5))
                train_info[0].append(loss)
                train_info[1].append(acc1)
                train_info[2].append(acc5)
                train_time.append(period)
                if batch_id % 10 == 0:
                    print("Pass {0}, trainbatch {1}, loss {2}, \
                        acc1 {3}, acc5 {4} time {5}"
                          .format(pass_id, batch_id, loss, acc1, acc5,
                                  "%2.2f sec" % period))
                    sys.stdout.flush()
                batch_id += 1
        except fluid.core.EOFException:
            train_py_reader.reset()
321 322 323 324

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()
325
        train_speed = np.array(train_time).mean() / (train_batch_size * device_num)
R
ruri 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

        test_py_reader.start()

        test_batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc1, acc5 = exe.run(program=test_prog,
                                           fetch_list=test_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(loss)
                acc1 = np.mean(acc1)
                acc5 = np.mean(acc5)
                test_info[0].append(loss)
                test_info[1].append(acc1)
                test_info[2].append(acc5)
                if test_batch_id % 10 == 0:
                    print("Pass {0},testbatch {1},loss {2}, \
                        acc1 {3},acc5 {4},time {5}"
                          .format(pass_id, test_batch_id, loss, acc1, acc5,
                                  "%2.2f sec" % period))
                    sys.stdout.flush()
                test_batch_id += 1
        except fluid.core.EOFException:
            test_py_reader.reset()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()
356

357
        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, "
R
ruri 已提交
358 359 360
              "test_loss {4}, test_acc1 {5}, test_acc5 {6}".format(
                  pass_id, train_loss, train_acc1, train_acc5, test_loss,
                  test_acc1, test_acc5))
361 362
        sys.stdout.flush()

363
        model_path = os.path.join(model_save_dir + '/' + model_name,
364
                                  str(pass_id))
365 366
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
R
ruri 已提交
367
        fluid.io.save_persistables(exe, model_path, main_program=train_prog)
368

369 370
        # This is for continuous evaluation only
        if args.enable_ce and pass_id == args.num_epochs - 1:
R
ruri 已提交
371
            if device_num == 1:
D
Dang Qingqing 已提交
372
                # Use the mean cost/acc for training
373 374 375 376 377 378 379 380 381
                print("kpis	train_cost	%s" % train_loss)
                print("kpis	train_acc_top1	%s" % train_acc1)
                print("kpis	train_acc_top5	%s" % train_acc5)
                # Use the mean cost/acc for testing
                print("kpis	test_cost	%s" % test_loss)
                print("kpis	test_acc_top1	%s" % test_acc1)
                print("kpis	test_acc_top5	%s" % test_acc5)
                print("kpis	train_speed	%s" % train_speed)
            else:
D
Dang Qingqing 已提交
382
                # Use the mean cost/acc for training
R
ruri 已提交
383 384 385 386 387
                print("kpis	train_cost_card%s	%s" % (device_num, train_loss))
                print("kpis	train_acc_top1_card%s	%s" %
                      (device_num, train_acc1))
                print("kpis	train_acc_top5_card%s	%s" %
                      (device_num, train_acc5))
388
                # Use the mean cost/acc for testing
R
ruri 已提交
389 390 391 392
                print("kpis	test_cost_card%s	%s" % (device_num, test_loss))
                print("kpis	test_acc_top1_card%s	%s" % (device_num, test_acc1))
                print("kpis	test_acc_top5_card%s	%s" % (device_num, test_acc5))
                print("kpis	train_speed_card%s	%s" % (device_num, train_speed))
393

394

395
def main():
396
    args = parser.parse_args()
R
ruri 已提交
397 398 399 400
    models_now = args.model_category
    assert models_now in ["models", "models_name"], "{} is not in lists: {}".format(
            models_now, ["models", "models_name"])
    set_models(models_now)
401
    print_arguments(args)
402
    train(args)
403

404 405 406

if __name__ == '__main__':
    main()