CGAN.py 8.7 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.CGAN_network import CGAN_model
from util import utility

import sys
import six
import os
import numpy as np
import time
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import paddle.fluid as fluid


class GTrainer():
    def __init__(self, input, conditions, cfg):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
L
lvmengsi 已提交
36
            model = CGAN_model(cfg.batch_size)
L
lvmengsi 已提交
37
            self.fake = model.network_G(input, conditions, name="G")
L
lvmengsi 已提交
38
            self.infer_program = self.program.clone(for_test=True)
L
lvmengsi 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
            d_fake = model.network_D(self.fake, conditions, name="D")
            fake_labels = fluid.layers.fill_constant_batch_size_like(
                input=input, dtype='float32', shape=[-1, 1], value=1.0)
            self.g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=fake_labels))

            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (var.name.startswith("G")):
                    vars.append(var.name)

            optimizer = fluid.optimizer.Adam(
                learning_rate=cfg.learning_rate, beta1=0.5, name="net_G")
            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, input, conditions, labels, cfg):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
L
lvmengsi 已提交
60
            model = CGAN_model(cfg.batch_size)
L
lvmengsi 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            d_logit = model.network_D(input, conditions, name="D")
            self.d_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_logit, label=labels))
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (var.name.startswith("D")):
                    vars.append(var.name)

            optimizer = fluid.optimizer.Adam(
                learning_rate=cfg.learning_rate, beta1=0.5, name="net_D")
            optimizer.minimize(self.d_loss, parameter_list=vars)


class CGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--noise_size', type=int, default=100, help="the noise dimension")

        return parser

    def __init__(self, cfg=None, train_reader=None):
        self.cfg = cfg
        self.train_reader = train_reader

    def build_model(self):

L
lvmengsi 已提交
88 89 90 91 92 93
        img = fluid.data(name='img', shape=[None, 784], dtype='float32')
        condition = fluid.data(
            name='condition', shape=[None, 1], dtype='float32')
        noise = fluid.data(
            name='noise', shape=[None, self.cfg.noise_size], dtype='float32')
        label = fluid.data(name='label', shape=[None, 1], dtype='float32')
L
lvmengsi 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107

        g_trainer = GTrainer(noise, condition, self.cfg)
        d_trainer = DTrainer(img, condition, label, self.cfg)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        const_n = np.random.uniform(
            low=-1.0, high=1.0,
            size=[self.cfg.batch_size, self.cfg.noise_size]).astype('float32')

        if self.cfg.init_model:
C
ceci3 已提交
108 109
            utility.init_checkpoints(self.cfg, g_trainer, "net_G")
            utility.init_checkpoints(self.cfg, d_trainer, "net_D")
L
lvmengsi 已提交
110

L
lvmengsi 已提交
111
        ### memory optim
L
lvmengsi 已提交
112 113 114 115 116 117 118 119 120 121
        build_strategy = fluid.BuildStrategy()
        build_strategy.enable_inplace = True

        g_trainer_program = fluid.CompiledProgram(
            g_trainer.program).with_data_parallel(
                loss_name=g_trainer.g_loss.name, build_strategy=build_strategy)
        d_trainer_program = fluid.CompiledProgram(
            d_trainer.program).with_data_parallel(
                loss_name=d_trainer.d_loss.name, build_strategy=build_strategy)

L
lvmengsi 已提交
122
        if self.cfg.run_test:
L
lvmengsi 已提交
123
            image_path = os.path.join(self.cfg.output, 'test')
L
lvmengsi 已提交
124 125
            if not os.path.exists(image_path):
                os.makedirs(image_path)
L
lvmengsi 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        t_time = 0
        for epoch_id in range(self.cfg.epoch):
            for batch_id, data in enumerate(self.train_reader()):
                if len(data) != self.cfg.batch_size:
                    continue

                noise_data = np.random.uniform(
                    low=-1.0,
                    high=1.0,
                    size=[self.cfg.batch_size, self.cfg.noise_size]).astype(
                        'float32')
                real_image = np.array(list(map(lambda x: x[0], data))).reshape(
                    [-1, 784]).astype('float32')
                condition_data = np.array([x[1] for x in data]).reshape(
                    [-1, 1]).astype('float32')
                real_label = np.ones(
                    shape=[real_image.shape[0], 1], dtype='float32')
                fake_label = np.zeros(
                    shape=[real_image.shape[0], 1], dtype='float32')
                s_time = time.time()

                generate_image = exe.run(
                    g_trainer.infer_program,
                    feed={'noise': noise_data,
                          'condition': condition_data},
                    fetch_list=[g_trainer.fake])

                d_real_loss = exe.run(d_trainer_program,
                                      feed={
                                          'img': real_image,
                                          'condition': condition_data,
                                          'label': real_label
                                      },
                                      fetch_list=[d_trainer.d_loss])[0]
                d_fake_loss = exe.run(d_trainer_program,
                                      feed={
L
lvmengsi 已提交
162
                                          'img': generate_image[0],
L
lvmengsi 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
                                          'condition': condition_data,
                                          'label': fake_label
                                      },
                                      fetch_list=[d_trainer.d_loss])[0]
                d_loss = d_real_loss + d_fake_loss

                for _ in six.moves.xrange(self.cfg.num_generator_time):
                    g_loss = exe.run(g_trainer_program,
                                     feed={
                                         'noise': noise_data,
                                         'condition': condition_data
                                     },
                                     fetch_list=[g_trainer.g_loss])[0]

                batch_time = time.time() - s_time
L
lvmengsi 已提交
178 179 180 181 182
                if batch_id % self.cfg.print_freq == 0:
                    print(
                        'Epoch ID: {} Batch ID: {} D_loss: {} G_loss: {} Batch_time_cost: {}'.
                        format(epoch_id, batch_id, d_loss[0], g_loss[0],
                               batch_time))
L
lvmengsi 已提交
183 184
                t_time += batch_time

L
lvmengsi 已提交
185
                if self.cfg.run_test:
L
lvmengsi 已提交
186 187 188 189
                    generate_const_image = exe.run(
                        g_trainer.infer_program,
                        feed={'noise': const_n,
                              'condition': condition_data},
190
                        fetch_list=[g_trainer.fake])[0]
L
lvmengsi 已提交
191 192 193 194 195 196 197 198

                    generate_image_reshape = np.reshape(generate_const_image, (
                        self.cfg.batch_size, -1))
                    total_images = np.concatenate(
                        [real_image, generate_image_reshape])
                    fig = utility.plot(total_images)
                    plt.title('Epoch ID={}, Batch ID={}'.format(epoch_id,
                                                                batch_id))
L
lvmengsi 已提交
199
                    img_name = '{:04d}_{:04d}.png'.format(epoch_id, batch_id)
L
lvmengsi 已提交
200
                    plt.savefig(
L
lvmengsi 已提交
201
                        os.path.join(image_path, img_name), bbox_inches='tight')
L
lvmengsi 已提交
202 203 204
                    plt.close(fig)

            if self.cfg.save_checkpoints:
C
ceci3 已提交
205 206
                utility.checkpoints(epoch_id, self.cfg, g_trainer, "net_G")
                utility.checkpoints(epoch_id, self.cfg, d_trainer, "net_D")