compress.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import multiprocessing
import numpy as np
import datetime
from collections import deque
import sys
sys.path.append("../../")
from paddle.fluid.contrib.slim import Compressor
from paddle.fluid.framework import IrGraph
from paddle.fluid import core

def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)

# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches, eval_results
from ppdet.utils.stats import TrainingStats
49
from ppdet.utils.cli import ArgsParser, print_total_cfg
50
from ppdet.utils.check import check_gpu, check_version
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
import ppdet.utils.checkpoint as checkpoint
from ppdet.modeling.model_input import create_feed

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def eval_run(exe, compile_program, reader, keys, values, cls, test_feed):
    """
    Run evaluation program, return program outputs.
    """
    iter_id = 0
    results = []
    if len(cls) != 0:
        values = []
        for i in range(len(cls)):
            _, accum_map = cls[i].get_map_var()
            cls[i].reset(exe)
            values.append(accum_map)

    images_num = 0
    start_time = time.time()
    has_bbox = 'bbox' in keys
    for data in reader():
        data = test_feed.feed(data)
        feed_data = {'image': data['image'],
                     'im_size': data['im_size']}
        outs = exe.run(compile_program,
                       feed=feed_data,
80
                       fetch_list=[values[0]],
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                       return_numpy=False)
        outs.append(data['gt_box'])
        outs.append(data['gt_label'])
        outs.append(data['is_difficult'])
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(keys, outs)
        }
        results.append(res)
        if iter_id % 100 == 0:
            logger.info('Test iter {}'.format(iter_id))
        iter_id += 1
        images_num += len(res['bbox'][1][0]) if has_bbox else 1
    logger.info('Test finish iter {}'.format(iter_id))

    end_time = time.time()
    fps = images_num / (end_time - start_time)
    if has_bbox:
        logger.info('Total number of images: {}, inference time: {} fps.'.
                    format(images_num, fps))
    else:
        logger.info('Total iteration: {}, inference time: {} batch/s.'.format(
            images_num, fps))

    return results


def main():
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)
    if 'log_iter' not in cfg:
        cfg.log_iter = 20

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
121
    # print_total_cfg(cfg)
122
    #check_version()
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(
            os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    if 'train_feed' not in cfg:
        train_feed = create(main_arch + 'TrainFeed')
    else:
        train_feed = create(cfg.train_feed)

    if 'eval_feed' not in cfg:
        eval_feed = create(main_arch + 'EvalFeed')
    else:
        eval_feed = create(cfg.eval_feed)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    lr_builder = create('LearningRate')
    optim_builder = create('OptimizerBuilder')

    # build program
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
151
            train_loader, feed_vars = create_feed(train_feed, iterable=True)
152 153 154 155 156 157 158
            train_fetches = model.train(feed_vars)
            loss = train_fetches['loss']
            lr = lr_builder()
            optimizer = optim_builder(lr)
            optimizer.minimize(loss)


159
    train_reader = create_reader(train_feed, cfg.max_iters,
160
                                 FLAGS.dataset_dir)
161
    train_loader.set_sample_list_generator(train_reader, place)
162 163 164 165 166 167 168 169 170 171 172 173 174 175

    # parse train fetches
    train_keys, train_values, _ = parse_fetches(train_fetches)
    train_values.append(lr)

    train_fetch_list=[]
    for k, v in zip(train_keys, train_values):
        train_fetch_list.append((k, v))
    print("train_fetch_list: {}".format(train_fetch_list))

    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
176
            _, test_feed_vars = create_feed(eval_feed, iterable=True)
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
            fetches = model.eval(test_feed_vars)
    eval_prog = eval_prog.clone(True)

    eval_reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir)
    #eval_pyreader.decorate_sample_list_generator(eval_reader, place)
    test_data_feed = fluid.DataFeeder(test_feed_vars.values(), place)

    # parse eval fetches
    extra_keys = []
    if cfg.metric == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg.metric == 'VOC':
        extra_keys = ['gt_box', 'gt_label', 'is_difficult']
    eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
                                                         extra_keys)
    # print(eval_values)

    eval_fetch_list=[]
    for k, v in zip(eval_keys, eval_values):
        eval_fetch_list.append((k, v))


    exe.run(startup_prog)

    start_iter = 0
L
Liufang Sang 已提交
202 203

    checkpoint.load_params(exe, train_prog, cfg.pretrain_weights)
204

205
    best_box_ap_list = []
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

    def eval_func(program, scope):

        #place = fluid.CPUPlace()
        #exe = fluid.Executor(place)
        results = eval_run(exe, program, eval_reader,
                           eval_keys, eval_values, eval_cls, test_data_feed)

        resolution = None
        if 'mask' in results[0]:
            resolution = model.mask_head.resolution
        box_ap_stats = eval_results(results, eval_feed, cfg.metric, cfg.num_classes,
                     resolution, False, FLAGS.output_eval)
        if len(best_box_ap_list) == 0:
            best_box_ap_list.append(box_ap_stats[0])
        elif box_ap_stats[0] > best_box_ap_list[0]:
            best_box_ap_list[0] = box_ap_stats[0]
        logger.info("Best test box ap: {}".format(
            best_box_ap_list[0]))
        return best_box_ap_list[0]

    test_feed = [('image', test_feed_vars['image'].name),
                 ('im_size', test_feed_vars['im_size'].name)]

    com = Compressor(
        place,
        fluid.global_scope(),
        train_prog,
234 235
        train_reader=train_reader,
        train_feed_list=[(key, value.name) for key, value in feed_vars.items()],
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        train_fetch_list=train_fetch_list,
        eval_program=eval_prog,
        eval_reader=eval_reader,
        eval_feed_list=test_feed,
        eval_func={'map': eval_func},
        eval_fetch_list=[eval_fetch_list[0]],
        train_optimizer=None)
    com.config(FLAGS.slim_file)
    com.run()



if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "-s",
        "--slim_file",
        default=None,
        type=str,
        help="Config file of PaddleSlim.")
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "-d",
        "--dataset_dir",
        default=None,
        type=str,
        help="Dataset path, same as DataFeed.dataset.dataset_dir")
    FLAGS = parser.parse_args()
    main()