STGAN.py 17.4 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lvmengsi 已提交
14 15 16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.STGAN_network import STGAN_model
from util import utility
import paddle.fluid as fluid
H
hysunflower 已提交
20
from paddle.fluid import profiler
L
lvmengsi 已提交
21 22 23 24
import sys
import time
import copy
import numpy as np
L
Lv Mengsi 已提交
25
import ast
L
lvmengsi 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58


class GTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = STGAN_model()
            self.fake_img, self.rec_img = model.network_G(
                image_real, label_org_, label_trg_, cfg, name="generator")
            self.fake_img.persistable = True
            self.rec_img.persistable = True
            self.infer_program = self.program.clone(for_test=True)
            self.g_loss_rec = fluid.layers.mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=image_real, y=self.rec_img)))
            self.pred_fake, self.cls_fake = model.network_D(
                self.fake_img, cfg, name="discriminator")
            #wgan
            if cfg.gan_mode == "wgan":
                self.g_loss_fake = -1 * fluid.layers.mean(self.pred_fake)
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_fake,
                    shape=self.pred_fake.shape,
                    value=1.0,
                    dtype='float32')
                self.g_loss_fake = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_fake, y=ones)))
L
lvmengsi 已提交
59 60 61
            else:
                raise NotImplementedError("gan_mode {} is not support!".format(
                    cfg.gan_mode))
L
lvmengsi 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

            self.g_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_fake,
                                                               label_trg))
            self.g_loss = self.g_loss_fake + cfg.lambda_rec * self.g_loss_rec + cfg.lambda_cls * self.g_loss_cls
            self.g_loss_fake.persistable = True
            self.g_loss_rec.persistable = True
            self.g_loss_cls.persistable = True
            lr = cfg.g_lr
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "generator"):
                    vars.append(var.name)
            self.param = vars
            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch], values=[lr, lr * 0.1]),
                beta1=0.5,
                beta2=0.999,
                name="net_G")

            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        lr = cfg.d_lr
        with fluid.program_guard(self.program):
            model = STGAN_model()
            self.fake_img, _ = model.network_G(
L
lvmengsi 已提交
95
                image_real, label_org_, label_trg_, cfg, name="generator")
L
lvmengsi 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
            self.pred_real, self.cls_real = model.network_D(
                image_real, cfg, name="discriminator")
            self.pred_real.persistable = True
            self.cls_real.persistable = True
            self.pred_fake, _ = model.network_D(
                self.fake_img, cfg, name="discriminator")
            self.d_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_real,
                                                               label_org))
            #wgan
            if cfg.gan_mode == "wgan":
                self.d_loss_fake = fluid.layers.reduce_mean(self.pred_fake)
                self.d_loss_real = -1 * fluid.layers.reduce_mean(self.pred_real)
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
L
lvmengsi 已提交
111
                    image_real,
L
lvmengsi 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
                    self.fake_img,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_real,
                    shape=self.pred_real.shape,
                    value=1.0,
                    dtype='float32')
                self.d_loss_real = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_real, y=ones)))
                self.d_loss_fake = fluid.layers.mean(
                    fluid.layers.square(x=self.pred_fake))
L
lvmengsi 已提交
129 130 131 132 133 134 135
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
                    image_real,
                    None,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
L
lvmengsi 已提交
136 137 138
            else:
                raise NotImplementedError("gan_mode {} is not support!".format(
                    cfg.gan_mode))
L
lvmengsi 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

            self.d_loss_real.persistable = True
            self.d_loss_fake.persistable = True
            self.d_loss.persistable = True
            self.d_loss_cls.persistable = True
            self.d_loss_gp.persistable = True
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (
                        var.name.startswith("discriminator")):
                    vars.append(var.name)
            self.param = vars

            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch],
                    values=[lr, lr * 0.1], ),
                beta1=0.5,
                beta2=0.999,
                name="net_D")

            optimizer.minimize(self.d_loss, parameter_list=vars)
L
lvmengsi 已提交
161 162
            f = open('G_program.txt', 'w')
            print(self.program, file=f)
L
lvmengsi 已提交
163 164 165

    def gradient_penalty(self, f, real, fake=None, cfg=None, name=None):
        def _interpolate(a, b=None):
L
lvmengsi 已提交
166 167 168 169
            if b is None:
                beta = fluid.layers.uniform_random_batch_size_like(
                    input=a, shape=a.shape, min=0.0, max=1.0)
                mean = fluid.layers.reduce_mean(
L
lvmengsi 已提交
170
                    a, dim=list(range(len(a.shape))), keep_dim=True)
L
lvmengsi 已提交
171 172 173
                input_sub_mean = fluid.layers.elementwise_sub(a, mean, axis=0)
                var = fluid.layers.reduce_mean(
                    fluid.layers.square(input_sub_mean),
L
lvmengsi 已提交
174
                    dim=list(range(len(a.shape))),
L
lvmengsi 已提交
175 176
                    keep_dim=True)
                b = beta * fluid.layers.sqrt(var) * 0.5 + a
L
lvmengsi 已提交
177 178 179
            shape = [a.shape[0]]
            alpha = fluid.layers.uniform_random_batch_size_like(
                input=a, shape=shape, min=0.0, max=1.0)
L
Lv Mengsi 已提交
180
            inner = fluid.layers.elementwise_mul((b-a), alpha, axis=0) + a
L
lvmengsi 已提交
181 182 183 184 185 186 187 188 189 190 191 192
            return inner

        x = _interpolate(real, fake)

        pred, _ = f(x, cfg=cfg, name=name)
        if isinstance(pred, tuple):
            pred = pred[0]
        vars = []
        for var in fluid.default_main_program().list_vars():
            if fluid.io.is_parameter(var) and var.name.startswith(
                    "discriminator"):
                vars.append(var.name)
L
lvmengsi 已提交
193
        grad = fluid.gradients(pred, x, no_grad_set=vars)[0]
L
lvmengsi 已提交
194 195 196
        grad_shape = grad.shape
        grad = fluid.layers.reshape(
            grad, [-1, grad_shape[1] * grad_shape[2] * grad_shape[3]])
L
lvmengsi 已提交
197
        epsilon = 1e-16
L
lvmengsi 已提交
198 199
        norm = fluid.layers.sqrt(
            fluid.layers.reduce_sum(
L
lvmengsi 已提交
200
                fluid.layers.square(grad), dim=1) + epsilon)
L
lvmengsi 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        gp = fluid.layers.reduce_mean(fluid.layers.square(norm - 1.0))
        return gp


class STGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--g_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of generator")
        parser.add_argument(
            '--d_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of discriminator")
        parser.add_argument(
            '--c_dim',
            type=int,
            default=13,
            help="the number of attributes we selected")
        parser.add_argument(
            '--d_fc_dim',
            type=int,
            default=1024,
            help="the base fc dim in discriminator")
        parser.add_argument(
L
Lv Mengsi 已提交
228
            '--use_gru', type=ast.literal_eval, default=True, help="whether to use GRU")
L
lvmengsi 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        parser.add_argument(
            '--lambda_cls',
            type=float,
            default=10.0,
            help="the coefficient of classification")
        parser.add_argument(
            '--lambda_rec',
            type=float,
            default=100.0,
            help="the coefficient of refactor")
        parser.add_argument(
            '--thres_int',
            type=float,
            default=0.5,
            help="thresh change of attributes")
        parser.add_argument(
            '--lambda_gp',
            type=float,
            default=10.0,
            help="the coefficient of gradient penalty")
        parser.add_argument(
            '--n_samples', type=int, default=16, help="batch size when testing")
        parser.add_argument(
            '--selected_attrs',
            type=str,
            default="Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
            help="the attributes we selected to change")
        parser.add_argument(
            '--n_layers',
            type=int,
            default=5,
            help="default layers in generotor")
        parser.add_argument(
            '--gru_n_layers',
            type=int,
            default=4,
            help="default layers of GRU in generotor")
L
lvmengsi 已提交
266 267 268 269 270 271
        parser.add_argument(
            '--dis_norm',
            type=str,
            default=None,
            help="the normalization in discriminator, choose in [None, instance_norm]"
        )
L
lvmengsi 已提交
272 273 274 275 276 277 278

        return parser

    def __init__(self,
                 cfg=None,
                 train_reader=None,
                 test_reader=None,
L
lvmengsi 已提交
279 280
                 batch_num=1,
                 id2name=None):
L
lvmengsi 已提交
281 282 283 284 285 286
        self.cfg = cfg
        self.train_reader = train_reader
        self.test_reader = test_reader
        self.batch_num = batch_num

    def build_model(self):
L
lvmengsi 已提交
287
        data_shape = [None, 3, self.cfg.image_size, self.cfg.image_size]
L
lvmengsi 已提交
288

L
lvmengsi 已提交
289
        image_real = fluid.data(
L
lvmengsi 已提交
290
            name='image_real', shape=data_shape, dtype='float32')
L
lvmengsi 已提交
291 292 293 294 295 296 297 298
        label_org = fluid.data(
            name='label_org', shape=[None, self.cfg.c_dim], dtype='float32')
        label_trg = fluid.data(
            name='label_trg', shape=[None, self.cfg.c_dim], dtype='float32')
        label_org_ = fluid.data(
            name='label_org_', shape=[None, self.cfg.c_dim], dtype='float32')
        label_trg_ = fluid.data(
            name='label_trg_', shape=[None, self.cfg.c_dim], dtype='float32')
L
lvmengsi 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311

        test_gen_trainer = GTrainer(image_real, label_org, label_org_,
                                    label_trg, label_trg_, self.cfg,
                                    self.batch_num)

        py_reader = fluid.io.PyReader(
            feed_list=[image_real, label_org, label_trg],
            capacity=64,
            iterable=True,
            use_double_buffer=True)
        label_org_ = (label_org * 2.0 - 1.0) * self.cfg.thres_int
        label_trg_ = (label_trg * 2.0 - 1.0) * self.cfg.thres_int

L
lvmengsi 已提交
312 313 314 315 316 317 318
        gen_trainer = GTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)
        dis_trainer = DTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
L
lvmengsi 已提交
319 320 321 322
        py_reader.decorate_batch_generator(
            self.train_reader,
            places=fluid.cuda_places()
            if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
323

L
lvmengsi 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, dis_trainer, "net_D")

        ### memory optim
        build_strategy = fluid.BuildStrategy()

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        dis_trainer_program = fluid.CompiledProgram(
            dis_trainer.program).with_data_parallel(
                loss_name=dis_trainer.d_loss.name,
                build_strategy=build_strategy)

        t_time = 0

H
hysunflower 已提交
345 346
        total_train_batch = 0  # used for benchmark

L
lvmengsi 已提交
347 348
        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
L
lvmengsi 已提交
349
            for data in py_reader():
H
hysunflower 已提交
350 351
                if self.cfg.max_iter and total_train_batch == self.cfg.max_iter: # used for benchmark
                    return
L
lvmengsi 已提交
352 353
                s_time = time.time()
                # optimize the discriminator network
L
lvmengsi 已提交
354 355 356 357 358 359 360 361 362 363 364
                fetches = [
                    dis_trainer.d_loss.name,
                    dis_trainer.d_loss_real.name,
                    dis_trainer.d_loss_fake.name,
                    dis_trainer.d_loss_cls.name,
                    dis_trainer.d_loss_gp.name,
                ]
                d_loss, d_loss_real, d_loss_fake, d_loss_cls, d_loss_gp, = exe.run(
                    dis_trainer_program, fetch_list=fetches, feed=data)
                if (batch_id + 1) % self.cfg.num_discriminator_time == 0:
                    # optimize the generator network
L
lvmengsi 已提交
365 366 367 368 369
                    d_fetches = [
                        gen_trainer.g_loss_fake.name,
                        gen_trainer.g_loss_rec.name, gen_trainer.g_loss_cls.name
                    ]
                    g_loss_fake, g_loss_rec, g_loss_cls = exe.run(
L
lvmengsi 已提交
370
                        gen_trainer_program, fetch_list=d_fetches, feed=data)
L
lvmengsi 已提交
371 372 373 374
                    print("epoch{}: batch{}: \n\
                         g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
                          .format(epoch_id, batch_id, g_loss_fake[0],
                                  g_loss_rec[0], g_loss_cls[0]))
L
lvmengsi 已提交
375 376 377 378 379 380 381 382
                batch_time = time.time() - s_time
                t_time += batch_time
                if (batch_id + 1) % self.cfg.print_freq == 0:
                    print("epoch{}: batch{}:  \n\
                         d_loss: {}; d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {} \n\
                         Batch_time_cost: {}".format(epoch_id, batch_id, d_loss[
                        0], d_loss_real[0], d_loss_fake[0], d_loss_cls[0],
                                                     d_loss_gp[0], batch_time))
L
lvmengsi 已提交
383 384
                sys.stdout.flush()
                batch_id += 1
H
hysunflower 已提交
385 386 387 388 389 390
                total_train_batch += 1  # used for benchmark
                # profiler tools
                if self.cfg.profile and epoch_id == 0 and batch_id == self.cfg.print_freq:
                    profiler.reset_profiler()
                elif self.cfg.profile and epoch_id == 0 and batch_id == self.cfg.print_freq + 5:
                    return
L
lvmengsi 已提交
391 392

            if self.cfg.run_test:
L
lvmengsi 已提交
393
                image_name = fluid.data(
L
lvmengsi 已提交
394
                    name='image_name',
L
lvmengsi 已提交
395
                    shape=[None, self.cfg.n_samples],
L
lvmengsi 已提交
396 397 398 399 400 401 402
                    dtype='int32')
                test_py_reader = fluid.io.PyReader(
                    feed_list=[image_real, label_org, label_trg, image_name],
                    capacity=32,
                    iterable=True,
                    use_double_buffer=True)
                test_py_reader.decorate_batch_generator(
L
lvmengsi 已提交
403 404 405
                    self.test_reader,
                    places=fluid.cuda_places()
                    if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
406
                test_program = test_gen_trainer.infer_program
L
lvmengsi 已提交
407
                utility.save_test_image(epoch_id, self.cfg, exe, place,
L
lvmengsi 已提交
408 409
                                        test_program, test_gen_trainer,
                                        test_py_reader)
L
lvmengsi 已提交
410 411 412 413 414 415

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer,
                                    "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, dis_trainer,
                                    "net_D")