demo_server.py 7.3 KB
Newer Older
1
"""Server-end for the ASR demo."""
2 3
import os
import time
4
import random
5
import argparse
X
Xinghai Sun 已提交
6
import functools
7 8 9 10 11
from time import gmtime, strftime
import SocketServer
import struct
import wave
import paddle.v2 as paddle
12
import _init_paths
13
from data_utils.data import DataGenerator
14
from model_utils.model import DeepSpeech2Model
15
from data_utils.utils import read_manifest
16
from utils.utility import add_arguments, print_arguments
17

18
parser = argparse.ArgumentParser(description=__doc__)
X
Xinghai Sun 已提交
19 20
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
21 22 23 24 25
add_arg('host_port',        int,    8086,    "Server's IP port.")
add_arg('beam_size',        int,    500,    "Beam search width.")
add_arg('num_conv_layers',  int,    2,      "# of convolution layers.")
add_arg('num_rnn_layers',   int,    3,      "# of recurrent layers.")
add_arg('rnn_layer_size',   int,    2048,   "# of recurrent cells per layer.")
26 27 28
add_arg('alpha',            float,  0.36,   "Coef of LM for beam search.")
add_arg('beta',             float,  0.25,   "Coef of WC for beam search.")
add_arg('cutoff_prob',      float,  0.99,   "Cutoff probability for pruning.")
29
add_arg('use_gru',          bool,   False,  "Use GRUs instead of simple RNNs.")
30
add_arg('use_gpu',          bool,   True,   "Use GPU or not.")
31 32
add_arg('share_rnn_weights',bool,   True,   "Share input-hidden weights across "
                                            "bi-directional RNNs. Not for GRU.")
33 34 35 36 37 38 39
add_arg('host_ip',          str,
        'localhost',
        "Server's IP address.")
add_arg('speech_save_dir',  str,
        'demo_cache',
        "Directory to save demo audios.")
add_arg('warmup_manifest',  str,
40
        'data/librispeech/manifest.test-clean',
41 42
        "Filepath of manifest to warm up.")
add_arg('mean_std_path',    str,
43
        'data/librispeech/mean_std.npz',
44 45
        "Filepath of normalizer's mean & std.")
add_arg('vocab_path',       str,
46
        'data/librispeech/eng_vocab.txt',
47 48
        "Filepath of vocabulary.")
add_arg('model_path',       str,
49
        './checkpoints/libri/params.latest.tar.gz',
50 51
        "If None, the training starts from scratch, "
        "otherwise, it resumes from the pre-trained model.")
52 53 54
add_arg('lang_model_path',  str,
        'lm/data/common_crawl_00.prune01111.trie.klm',
        "Filepath for language model.")
55
add_arg('decoding_method',  str,
56
        'ctc_beam_search',
57
        "Decoding method. Options: ctc_beam_search, ctc_greedy",
58 59 60 61 62
        choices = ['ctc_beam_search', 'ctc_greedy'])
add_arg('specgram_type',    str,
        'linear',
        "Audio feature type. Options: linear, mfcc.",
        choices=['linear', 'mfcc'])
63
# yapf: disable
X
Xinghai Sun 已提交
64
args = parser.parse_args()
65 66 67


class AsrTCPServer(SocketServer.TCPServer):
68 69
    """The ASR TCP Server."""

70 71 72 73 74 75 76 77 78 79 80 81 82
    def __init__(self,
                 server_address,
                 RequestHandlerClass,
                 speech_save_dir,
                 audio_process_handler,
                 bind_and_activate=True):
        self.speech_save_dir = speech_save_dir
        self.audio_process_handler = audio_process_handler
        SocketServer.TCPServer.__init__(
            self, server_address, RequestHandlerClass, bind_and_activate=True)


class AsrRequestHandler(SocketServer.BaseRequestHandler):
83
    """The ASR request handler."""
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

    def handle(self):
        # receive data through TCP socket
        chunk = self.request.recv(1024)
        target_len = struct.unpack('>i', chunk[:4])[0]
        data = chunk[4:]
        while len(data) < target_len:
            chunk = self.request.recv(1024)
            data += chunk
        # write to file
        filename = self._write_to_file(data)

        print("Received utterance[length=%d] from %s, saved to %s." %
              (len(data), self.client_address[0], filename))
        start_time = time.time()
        transcript = self.server.audio_process_handler(filename)
        finish_time = time.time()
        print("Response Time: %f, Transcript: %s" %
              (finish_time - start_time, transcript))
103
        self.request.sendall(transcript.encode('utf-8'))
104 105 106 107 108 109 110 111

    def _write_to_file(self, data):
        # prepare save dir and filename
        if not os.path.exists(self.server.speech_save_dir):
            os.mkdir(self.server.speech_save_dir)
        timestamp = strftime("%Y%m%d%H%M%S", gmtime())
        out_filename = os.path.join(
            self.server.speech_save_dir,
112
            timestamp + "_" + self.client_address[0] + ".wav")
113 114 115 116 117 118 119 120 121 122
        # write to wav file
        file = wave.open(out_filename, 'wb')
        file.setnchannels(1)
        file.setsampwidth(4)
        file.setframerate(16000)
        file.writeframes(data)
        file.close()
        return out_filename


123 124 125 126
def warm_up_test(audio_process_handler,
                 manifest_path,
                 num_test_cases,
                 random_seed=0):
127
    """Warming-up test."""
128 129 130 131 132 133 134 135 136 137 138 139
    manifest = read_manifest(manifest_path)
    rng = random.Random(random_seed)
    samples = rng.sample(manifest, num_test_cases)
    for idx, sample in enumerate(samples):
        print("Warm-up Test Case %d: %s", idx, sample['audio_filepath'])
        start_time = time.time()
        transcript = audio_process_handler(sample['audio_filepath'])
        finish_time = time.time()
        print("Response Time: %f, Transcript: %s" %
              (finish_time - start_time, transcript))


140
def start_server():
141 142
    """Start the ASR server"""
    # prepare data generator
143
    data_generator = DataGenerator(
144 145
        vocab_filepath=args.vocab_path,
        mean_std_filepath=args.mean_std_path,
146 147 148
        augmentation_config='{}',
        specgram_type=args.specgram_type,
        num_threads=1)
149
    # prepare ASR model
150 151 152 153 154
    ds2_model = DeepSpeech2Model(
        vocab_size=data_generator.vocab_size,
        num_conv_layers=args.num_conv_layers,
        num_rnn_layers=args.num_rnn_layers,
        rnn_layer_size=args.rnn_layer_size,
X
Xinghai Sun 已提交
155
        use_gru=args.use_gru,
156
        pretrained_model_path=args.model_path,
157
        share_rnn_weights=args.share_rnn_weights)
158

159
    # prepare ASR inference handler
160 161 162 163
    def file_to_transcript(filename):
        feature = data_generator.process_utterance(filename, "")
        result_transcript = ds2_model.infer_batch(
            infer_data=[feature],
164
            decoding_method=args.decoding_method,
165 166 167 168 169
            beam_alpha=args.alpha,
            beam_beta=args.beta,
            beam_size=args.beam_size,
            cutoff_prob=args.cutoff_prob,
            vocab_list=data_generator.vocab_list,
170
            language_model_path=args.lang_model_path,
171 172 173
            num_processes=1)
        return result_transcript[0]

174
    # warming up with utterrances sampled from Librispeech
175 176 177 178
    print('-----------------------------------------------------------')
    print('Warming up ...')
    warm_up_test(
        audio_process_handler=file_to_transcript,
179
        manifest_path=args.warmup_manifest,
180 181 182
        num_test_cases=3)
    print('-----------------------------------------------------------')

183
    # start the server
184 185 186 187 188 189 190 191 192 193
    server = AsrTCPServer(
        server_address=(args.host_ip, args.host_port),
        RequestHandlerClass=AsrRequestHandler,
        speech_save_dir=args.speech_save_dir,
        audio_process_handler=file_to_transcript)
    print("ASR Server Started.")
    server.serve_forever()


def main():
194
    print_arguments(args)
195 196 197 198 199 200
    paddle.init(use_gpu=args.use_gpu, trainer_count=1)
    start_server()


if __name__ == "__main__":
    main()