reader.py 4.7 KB
Newer Older
W
wangmeng28 已提交
1
import os
W
wangmeng28 已提交
2
import math
W
wangmeng28 已提交
3 4 5
import random
import functools
import numpy as np
6
import paddle
W
wangmeng28 已提交
7 8 9
from PIL import Image, ImageEnhance

random.seed(0)
10
np.random.seed(0)
W
wangmeng28 已提交
11 12 13 14

DATA_DIM = 224

THREAD = 8
15
BUF_SIZE = 102400
W
wangmeng28 已提交
16

17 18 19
DATA_DIR = 'data/ILSVRC2012'
TRAIN_LIST = 'data/ILSVRC2012/train_list.txt'
TEST_LIST = 'data/ILSVRC2012/val_list.txt'
W
wangmeng28 已提交
20

W
wangmeng28 已提交
21 22
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
W
wangmeng28 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39


def resize_short(img, target_size):
    percent = float(target_size) / min(img.size[0], img.size[1])
    resized_width = int(round(img.size[0] * percent))
    resized_height = int(round(img.size[1] * percent))
    img = img.resize((resized_width, resized_height), Image.LANCZOS)
    return img


def crop_image(img, target_size, center):
    width, height = img.size
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
40 41
        w_start = np.random.randint(0, width - size)
        h_start = np.random.randint(0, height - size)
W
wangmeng28 已提交
42 43 44 45 46 47
    w_end = w_start + size
    h_end = h_start + size
    img = img.crop((w_start, h_start, w_end, h_end))
    return img


W
wangmeng28 已提交
48
def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]):
49
    aspect_ratio = math.sqrt(np.random.uniform(*ratio))
W
wangmeng28 已提交
50 51 52 53 54 55 56 57
    w = 1. * aspect_ratio
    h = 1. / aspect_ratio

    bound = min((float(img.size[0]) / img.size[1]) / (w**2),
                (float(img.size[1]) / img.size[0]) / (h**2))
    scale_max = min(scale[1], bound)
    scale_min = min(scale[0], bound)

58
    target_area = img.size[0] * img.size[1] * np.random.uniform(scale_min,
W
wangmeng28 已提交
59 60 61 62 63
                                                             scale_max)
    target_size = math.sqrt(target_area)
    w = int(target_size * w)
    h = int(target_size * h)

64 65
    i = np.random.randint(0, img.size[0] - w)
    j = np.random.randint(0, img.size[1] - h)
W
wangmeng28 已提交
66 67 68 69 70 71

    img = img.crop((i, j, i + w, j + h))
    img = img.resize((size, size), Image.LANCZOS)
    return img


72
def rotate_image(img):
73
    angle = np.random.randint(-10, 10)
74 75 76 77
    img = img.rotate(angle)
    return img


W
wangmeng28 已提交
78 79
def distort_color(img):
    def random_brightness(img, lower=0.5, upper=1.5):
80
        e = np.random.uniform(lower, upper)
W
wangmeng28 已提交
81 82 83
        return ImageEnhance.Brightness(img).enhance(e)

    def random_contrast(img, lower=0.5, upper=1.5):
84
        e = np.random.uniform(lower, upper)
W
wangmeng28 已提交
85 86 87
        return ImageEnhance.Contrast(img).enhance(e)

    def random_color(img, lower=0.5, upper=1.5):
88
        e = np.random.uniform(lower, upper)
W
wangmeng28 已提交
89 90 91
        return ImageEnhance.Color(img).enhance(e)

    ops = [random_brightness, random_contrast, random_color]
92
    np.random.shuffle(ops)
W
wangmeng28 已提交
93 94 95 96 97 98 99 100

    img = ops[0](img)
    img = ops[1](img)
    img = ops[2](img)

    return img


W
wangmeng28 已提交
101
def process_image(sample, mode, color_jitter, rotate):
W
wangmeng28 已提交
102 103 104 105
    img_path = sample[0]

    img = Image.open(img_path)
    if mode == 'train':
W
wangmeng28 已提交
106 107
        if rotate: img = rotate_image(img)
        img = random_crop(img, DATA_DIM)
W
wangmeng28 已提交
108
    else:
109
        img = resize_short(img, target_size=256)
W
wangmeng28 已提交
110
        img = crop_image(img, target_size=DATA_DIM, center=True)
W
wangmeng28 已提交
111
    if mode == 'train':
W
wangmeng28 已提交
112 113
        if color_jitter:
            img = distort_color(img)
114
        if np.random.randint(0, 1) == 1:
W
wangmeng28 已提交
115 116 117 118 119
            img = img.transpose(Image.FLIP_LEFT_RIGHT)

    if img.mode != 'RGB':
        img = img.convert('RGB')

W
wangmeng28 已提交
120
    img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
W
wangmeng28 已提交
121
    img -= img_mean
W
wangmeng28 已提交
122
    img /= img_std
W
wangmeng28 已提交
123

124
    if mode == 'train' or mode == 'val':
W
wangmeng28 已提交
125
        return img, sample[1]
126
    elif mode == 'test':
127
        return [img]
W
wangmeng28 已提交
128 129


W
wangmeng28 已提交
130 131 132 133 134
def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False):
W
wangmeng28 已提交
135 136 137 138
    def reader():
        with open(file_list) as flist:
            lines = [line.strip() for line in flist]
            if shuffle:
139
                np.random.shuffle(lines)
W
wangmeng28 已提交
140
            for line in lines:
141
                if mode == 'train' or mode == 'val':
W
wangmeng28 已提交
142 143 144
                    img_path, label = line.split()
                    img_path = os.path.join(DATA_DIR, img_path)
                    yield img_path, int(label)
145
                elif mode == 'test':
W
wangmeng28 已提交
146 147 148
                    img_path = os.path.join(DATA_DIR, line)
                    yield [img_path]

W
wangmeng28 已提交
149 150
    mapper = functools.partial(
        process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
W
wangmeng28 已提交
151 152 153 154

    return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)


155
def train(file_list=TRAIN_LIST):
W
wangmeng28 已提交
156
    return _reader_creator(
157
        file_list, 'train', shuffle=True, color_jitter=False, rotate=False)
W
wangmeng28 已提交
158 159


160 161
def val(file_list=TEST_LIST):
    return _reader_creator(file_list, 'val', shuffle=False)
W
wangmeng28 已提交
162 163


L
Luo Tao 已提交
164
def test(file_list=TEST_LIST):
165
    return _reader_creator(file_list, 'test', shuffle=False)