data_utils.py 5.2 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
"""
This code is based on https://github.com/fchollet/keras/blob/master/keras/utils/data_utils.py
"""

import os
import sys
import signal
import time
import numpy as np
import threading
import multiprocessing
try:
    import queue
except ImportError:
    import Queue as queue


# handle terminate reader process, do not print stack frame
def _reader_quit(signum, frame):
    print("Reader process exit.")
    sys.exit()

def _term_group(sig_num, frame):
    print('pid {} terminated, terminate group '
          '{}...'.format(os.getpid(), os.getpgrp()))
    os.killpg(os.getpgid(os.getpid()), signal.SIGKILL)

signal.signal(signal.SIGTERM, _reader_quit)
signal.signal(signal.SIGINT, _term_group)


class GeneratorEnqueuer(object):
    """
    Builds a queue out of a data generator.

    Args:
        generator: a generator function which endlessly yields data
        use_multiprocessing (bool): use multiprocessing if True,
            otherwise use threading.
        wait_time (float): time to sleep in-between calls to `put()`.
        random_seed (int): Initial seed for workers,
            will be incremented by one for each workers.
    """

    def __init__(self,
                 generator,
                 use_multiprocessing=False,
                 wait_time=0.05,
                 random_seed=None):
        self.wait_time = wait_time
        self._generator = generator
        self._use_multiprocessing = use_multiprocessing
        self._threads = []
        self._stop_event = None
        self.queue = None
        self._manager = None
        self.seed = random_seed

    def start(self, workers=1, max_queue_size=10):
        """
        Start worker threads which add data from the generator into the queue.

        Args:
            workers (int): number of worker threads
            max_queue_size (int): queue size
                (when full, threads could block on `put()`)
        """

        def data_generator_task():
            """
            Data generator task.
            """

            def task():
                if (self.queue is not None and
                        self.queue.qsize() < max_queue_size):
                    generator_output = next(self._generator)
                    self.queue.put((generator_output))
                else:
                    time.sleep(self.wait_time)

            if not self._use_multiprocessing:
                while not self._stop_event.is_set():
                    with self.genlock:
                        try:
                            task()
                        except Exception:
                            self._stop_event.set()
                            break
            else:
                while not self._stop_event.is_set():
                    try:
                        task()
                    except Exception:
                        self._stop_event.set()
                        break

        try:
            if self._use_multiprocessing:
                self._manager = multiprocessing.Manager()
                self.queue = self._manager.Queue(maxsize=max_queue_size)
                self._stop_event = multiprocessing.Event()
            else:
                self.genlock = threading.Lock()
                self.queue = queue.Queue()
                self._stop_event = threading.Event()
            for _ in range(workers):
                if self._use_multiprocessing:
                    # Reset random seed else all children processes
                    # share the same seed
                    np.random.seed(self.seed)
                    thread = multiprocessing.Process(target=data_generator_task)
                    thread.daemon = True
                    if self.seed is not None:
                        self.seed += 1
                else:
                    thread = threading.Thread(target=data_generator_task)
                self._threads.append(thread)
                thread.start()
        except:
            self.stop()
            raise

    def is_running(self):
        """
        Returns:
            bool: Whether the worker theads are running.
        """
        return self._stop_event is not None and not self._stop_event.is_set()

    def stop(self, timeout=None):
        """
        Stops running threads and wait for them to exit, if necessary.
        Should be called by the same thread which called `start()`.

        Args:
            timeout(int|None): maximum time to wait on `thread.join()`.
        """
        if self.is_running():
            self._stop_event.set()
        for thread in self._threads:
            if self._use_multiprocessing:
                if thread.is_alive():
                    thread.join(timeout)
            else:
                thread.join(timeout)
        if self._manager:
            self._manager.shutdown()

        self._threads = []
        self._stop_event = None
        self.queue = None

    def get(self):
        """
        Creates a generator to extract data from the queue.
        Skip the data if it is `None`.

        # Yields
            tuple of data in the queue.
        """
        while self.is_running():
            if not self.queue.empty():
                inputs = self.queue.get()
                if inputs is not None:
                    yield inputs
            else:
                time.sleep(self.wait_time)