reader.py 15.8 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
#  Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import sys
import cv2
import math
import random
import functools
try:
    import cPickle as pickle
    from cStringIO import StringIO
except ImportError:
    import pickle
    from io import BytesIO
import numpy as np
import paddle
from PIL import Image, ImageEnhance
import logging

logger = logging.getLogger(__name__)
python_ver = sys.version_info


class KineticsReader():
    """
    Data reader for kinetics dataset of two format mp4 and pkl.
    1. mp4, the original format of kinetics400
    2. pkl, the mp4 was decoded previously and stored as pkl
    In both case, load the data, and then get the frame data in the form of numpy and label as an integer.
     dataset cfg: format
                  num_classes
                  seg_num
                  short_size
                  target_size
                  num_reader_threads
                  buf_size
                  image_mean
                  image_std
                  batch_size
                  list
    """

    def __init__(self, mode, cfg):

        self.mode = mode
        self.format = cfg.MODEL.format
        self.num_classes = cfg.MODEL.num_classes
        self.seg_num = cfg.MODEL.seg_num
        self.seglen = cfg.MODEL.seglen

        self.short_size = cfg[mode.upper()]['short_size']
        self.target_size = cfg[mode.upper()]['target_size']
        self.num_reader_threads = cfg[mode.upper()]['num_reader_threads']
        self.buf_size = cfg[mode.upper()]['buf_size']

        self.img_mean = np.array(cfg.MODEL.image_mean).reshape(
            [3, 1, 1]).astype(np.float32)
        self.img_std = np.array(cfg.MODEL.image_std).reshape(
            [3, 1, 1]).astype(np.float32)
        # set batch size and file list
        self.batch_size = cfg[mode.upper()]['batch_size']
        self.filelist = cfg[mode.upper()]['filelist']
        if self.mode == 'infer':
            self.video_path = cfg[mode.upper()]['video_path']
        else:
            self.video_path = ''

    def create_reader(self):
        # if set video_path for inference mode, just load this single video
        if (self.mode == 'infer') and (self.video_path != ''):
            # load video from file stored at video_path
            _reader = self._inference_reader_creator(
                self.video_path,
                self.mode,
                seg_num=self.seg_num,
                seglen=self.seglen,
                short_size=self.short_size,
                target_size=self.target_size,
                img_mean=self.img_mean,
                img_std=self.img_std)
        else:
            assert os.path.exists(self.filelist), \
                        '{} not exist, please check the data list'.format(self.filelist)
            _reader = self._reader_creator(self.filelist, self.mode, seg_num=self.seg_num, seglen = self.seglen, \
                             short_size = self.short_size, target_size = self.target_size, \
                             img_mean = self.img_mean, img_std = self.img_std, \
                             shuffle = (self.mode == 'train'), \
                             num_threads = self.num_reader_threads, \
                             buf_size = self.buf_size, format = self.format)

        def _batch_reader():
            batch_out = []
            for imgs, label in _reader():
                if imgs is None:
                    continue
                batch_out.append((imgs, label))
                if len(batch_out) == self.batch_size:
                    yield batch_out
                    batch_out = []

        return _batch_reader

    def _inference_reader_creator(self, video_path, mode, seg_num, seglen,
                                  short_size, target_size, img_mean, img_std):
        def reader():
            try:
                imgs = mp4_loader(video_path, seg_num, seglen, mode)
                if len(imgs) < 1:
                    logger.error('{} frame length {} less than 1.'.format(
                        video_path, len(imgs)))
                    yield None, None
            except:
                logger.error('Error when loading {}'.format(mp4_path))
                yield None, None

            imgs_ret = imgs_transform(imgs, mode, seg_num, seglen, short_size,
                                      target_size, img_mean, img_std)
            label_ret = video_path

            yield imgs_ret, label_ret

        return reader

    def _reader_creator(self,
                        pickle_list,
                        mode,
                        seg_num,
                        seglen,
                        short_size,
                        target_size,
                        img_mean,
                        img_std,
                        shuffle=False,
                        num_threads=1,
                        buf_size=1024,
                        format='pkl'):
        def decode_mp4(sample, mode, seg_num, seglen, short_size, target_size,
                       img_mean, img_std):
            sample = sample[0].split(' ')
            mp4_path = sample[0]
            # when infer, we store vid as label
            label = int(sample[1])
            try:
                imgs = mp4_loader(mp4_path, seg_num, seglen, mode)
                if len(imgs) < 1:
                    logger.error('{} frame length {} less than 1.'.format(
                        mp4_path, len(imgs)))
                    return None, None
            except:
                logger.error('Error when loading {}'.format(mp4_path))
                return None, None

            return imgs_transform(imgs, mode, seg_num, seglen, \
                         short_size, target_size, img_mean, img_std ), label

        def decode_pickle(sample, mode, seg_num, seglen, short_size,
                          target_size, img_mean, img_std):
            pickle_path = sample[0]
            try:
                if python_ver < (3, 0):
                    data_loaded = pickle.load(open(pickle_path, 'rb'))
                else:
                    data_loaded = pickle.load(
                        open(pickle_path, 'rb'), encoding='bytes')

                vid, label, frames = data_loaded
                if len(frames) < 1:
                    logger.error('{} frame length {} less than 1.'.format(
                        pickle_path, len(frames)))
                    return None, None
            except:
                logger.info('Error when loading {}'.format(pickle_path))
                return None, None

            if mode == 'train' or mode == 'valid' or mode == 'test':
                ret_label = label
            elif mode == 'infer':
                ret_label = vid

            imgs = video_loader(frames, seg_num, seglen, mode)
            return imgs_transform(imgs, mode, seg_num, seglen, \
                         short_size, target_size, img_mean, img_std), ret_label

        def reader():
            with open(pickle_list) as flist:
                lines = [line.strip() for line in flist]
                if shuffle:
                    random.shuffle(lines)
                for line in lines:
                    pickle_path = line.strip()
                    yield [pickle_path]

        if format == 'pkl':
            decode_func = decode_pickle
        elif format == 'mp4':
            decode_func = decode_mp4
        else:
            raise "Not implemented format {}".format(format)

        mapper = functools.partial(
            decode_func,
            mode=mode,
            seg_num=seg_num,
            seglen=seglen,
            short_size=short_size,
            target_size=target_size,
            img_mean=img_mean,
            img_std=img_std)

        return paddle.reader.xmap_readers(mapper, reader, num_threads, buf_size)


def imgs_transform(imgs, mode, seg_num, seglen, short_size, target_size,
                   img_mean, img_std):
    imgs = group_scale(imgs, short_size)

    if mode == 'train':
        #if name == "TSM":
        imgs = group_multi_scale_crop(imgs, short_size)
        imgs = group_random_crop(imgs, target_size)
        imgs = group_random_flip(imgs)
    else:
        imgs = group_center_crop(imgs, target_size)

    np_imgs = (np.array(imgs[0]).astype('float32').transpose(
        (2, 0, 1))).reshape(1, 3, target_size, target_size) / 255
    for i in range(len(imgs) - 1):
        img = (np.array(imgs[i + 1]).astype('float32').transpose(
            (2, 0, 1))).reshape(1, 3, target_size, target_size) / 255
        np_imgs = np.concatenate((np_imgs, img))
    imgs = np_imgs
    imgs -= img_mean
    imgs /= img_std
    imgs = np.reshape(imgs, (seg_num, seglen * 3, target_size, target_size))
    return imgs

def group_multi_scale_crop(img_group, target_size, scales=None, \
        max_distort=1, fix_crop=True, more_fix_crop=True):
    scales = scales if scales is not None else [1, .875, .75, .66]
    input_size = [target_size, target_size]

    im_size = img_group[0].size

    # get random crop offset
    def _sample_crop_size(im_size):
        image_w, image_h = im_size[0], im_size[1]

        base_size = min(image_w, image_h)
        crop_sizes = [int(base_size * x) for x in scales]
        crop_h = [
            input_size[1] if abs(x - input_size[1]) < 3 else x
            for x in crop_sizes
        ]
        crop_w = [
            input_size[0] if abs(x - input_size[0]) < 3 else x
            for x in crop_sizes
        ]

        pairs = []
        for i, h in enumerate(crop_h):
            for j, w in enumerate(crop_w):
                if abs(i - j) <= max_distort:
                    pairs.append((w, h))
        crop_pair = random.choice(pairs)
        if not fix_crop:
            w_offset = random.randint(0, image_w - crop_pair[0])
            h_offset = random.randint(0, image_h - crop_pair[1])
        else:
            w_step = (image_w - crop_pair[0]) / 4
            h_step = (image_h - crop_pair[1]) / 4

            ret = list()
            ret.append((0, 0))  # upper left
            if w_step != 0:
                ret.append((4 * w_step, 0))  # upper right
            if h_step != 0:
                ret.append((0, 4 * h_step))  # lower left
            if h_step != 0 and w_step != 0:
                ret.append((4 * w_step, 4 * h_step))  # lower right
            if h_step != 0 or w_step != 0:
                ret.append((2 * w_step, 2 * h_step))  # center

            if more_fix_crop:
                ret.append((0, 2 * h_step))  # center left
                ret.append((4 * w_step, 2 * h_step))  # center right
                ret.append((2 * w_step, 4 * h_step))  # lower center
                ret.append((2 * w_step, 0 * h_step))  # upper center

                ret.append((1 * w_step, 1 * h_step))  # upper left quarter
                ret.append((3 * w_step, 1 * h_step))  # upper right quarter
                ret.append((1 * w_step, 3 * h_step))  # lower left quarter
                ret.append((3 * w_step, 3 * h_step))  # lower righ quarter

            w_offset, h_offset = random.choice(ret)

        return crop_pair[0], crop_pair[1], w_offset, h_offset

    crop_w, crop_h, offset_w, offset_h = _sample_crop_size(im_size)
    crop_img_group = [
        img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h))
        for img in img_group
    ]
    ret_img_group = [
        img.resize((input_size[0], input_size[1]), Image.BILINEAR)
        for img in crop_img_group
    ]

    return ret_img_group


def group_random_crop(img_group, target_size):
    w, h = img_group[0].size
    th, tw = target_size, target_size

    assert (w >= target_size) and (h >= target_size), \
          "image width({}) and height({}) should be larger than crop size".format(w, h, target_size)

    out_images = []
    x1 = random.randint(0, w - tw)
    y1 = random.randint(0, h - th)

    for img in img_group:
        if w == tw and h == th:
            out_images.append(img)
        else:
            out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))

    return out_images


def group_random_flip(img_group):
    v = random.random()
    if v < 0.5:
        ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
        return ret
    else:
        return img_group


def group_center_crop(img_group, target_size):
    img_crop = []
    for img in img_group:
        w, h = img.size
        th, tw = target_size, target_size
        assert (w >= target_size) and (h >= target_size), \
             "image width({}) and height({}) should be larger than crop size".format(w, h, target_size)
        x1 = int(round((w - tw) / 2.))
        y1 = int(round((h - th) / 2.))
        img_crop.append(img.crop((x1, y1, x1 + tw, y1 + th)))

    return img_crop


def group_scale(imgs, target_size):
    resized_imgs = []
    for i in range(len(imgs)):
        img = imgs[i]
        w, h = img.size
        if (w <= h and w == target_size) or (h <= w and h == target_size):
            resized_imgs.append(img)
            continue

        if w < h:
            ow = target_size
            oh = int(target_size * 4.0 / 3.0)
            resized_imgs.append(img.resize((ow, oh), Image.BILINEAR))
        else:
            oh = target_size
            ow = int(target_size * 4.0 / 3.0)
            resized_imgs.append(img.resize((ow, oh), Image.BILINEAR))

    return resized_imgs


def imageloader(buf):
    if isinstance(buf, str):
        img = Image.open(StringIO(buf))
    else:
        img = Image.open(BytesIO(buf))

    return img.convert('RGB')


def video_loader(frames, nsample, seglen, mode):
    videolen = len(frames)
    average_dur = int(videolen / nsample)

    imgs = []
    for i in range(nsample):
        idx = 0
        if mode == 'train':
            if average_dur >= seglen:
                idx = random.randint(0, average_dur - seglen)
                idx += i * average_dur
            elif average_dur >= 1:
                idx += i * average_dur
            else:
                idx = i
        else:
            if average_dur >= seglen:
                idx = (average_dur - seglen) // 2
                idx += i * average_dur
            elif average_dur >= 1:
                idx += i * average_dur
            else:
                idx = i

        for jj in range(idx, idx + seglen):
            imgbuf = frames[int(jj % videolen)]
            img = imageloader(imgbuf)
            imgs.append(img)

    return imgs


def mp4_loader(filepath, nsample, seglen, mode):
    cap = cv2.VideoCapture(filepath)
    videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    sampledFrames = []
    for i in range(videolen):
        ret, frame = cap.read()
        # maybe first frame is empty
        if ret == False:
            continue
        img = frame[:, :, ::-1]
        sampledFrames.append(img)
    average_dur = int(len(sampledFrames) / nsample)
    imgs = []
    for i in range(nsample):
        idx = 0
        if mode == 'train':
            if average_dur >= seglen:
                idx = random.randint(0, average_dur - seglen)
                idx += i * average_dur
            elif average_dur >= 1:
                idx += i * average_dur
            else:
                idx = i
        else:
            if average_dur >= seglen:
                idx = (average_dur - 1) // 2
                idx += i * average_dur
            elif average_dur >= 1:
                idx += i * average_dur
            else:
                idx = i

        for jj in range(idx, idx + seglen):
            imgbuf = sampledFrames[int(jj % len(sampledFrames))]
            img = Image.fromarray(imgbuf, mode='RGB')
            imgs.append(img)

    return imgs