autoaugment.py 11.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
"""
This code is based on https://github.com/DeepVoltaire/AutoAugment/blob/master/autoaugment.py
"""
from PIL import Image, ImageEnhance, ImageOps
import numpy as np
import random


class ImageNetPolicy(object):
    """ Randomly choose one of the best 24 Sub-policies on ImageNet.

        Example:
        >>> policy = ImageNetPolicy()
        >>> transformed = policy(image)

        Example as a PyTorch Transform:
        >>> transform=transforms.Compose([
        >>>     transforms.Resize(256),
        >>>     ImageNetPolicy(),
        >>>     transforms.ToTensor()])
    """

    def __init__(self, fillcolor=(128, 128, 128)):
        self.policies = [
            SubPolicy(0.4, "posterize", 8, 0.6, "rotate", 9, fillcolor),
            SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor),
            SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor),
            SubPolicy(0.6, "posterize", 7, 0.6, "posterize", 6, fillcolor),
            SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor),
            SubPolicy(0.4, "equalize", 4, 0.8, "rotate", 8, fillcolor),
            SubPolicy(0.6, "solarize", 3, 0.6, "equalize", 7, fillcolor),
            SubPolicy(0.8, "posterize", 5, 1.0, "equalize", 2, fillcolor),
            SubPolicy(0.2, "rotate", 3, 0.6, "solarize", 8, fillcolor),
            SubPolicy(0.6, "equalize", 8, 0.4, "posterize", 6, fillcolor),
            SubPolicy(0.8, "rotate", 8, 0.4, "color", 0, fillcolor),
            SubPolicy(0.4, "rotate", 9, 0.6, "equalize", 2, fillcolor),
            SubPolicy(0.0, "equalize", 7, 0.8, "equalize", 8, fillcolor),
            SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor),
            SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor),
            SubPolicy(0.8, "rotate", 8, 1.0, "color", 2, fillcolor),
            SubPolicy(0.8, "color", 8, 0.8, "solarize", 7, fillcolor),
            SubPolicy(0.4, "sharpness", 7, 0.6, "invert", 8, fillcolor),
            SubPolicy(0.6, "shearX", 5, 1.0, "equalize", 9, fillcolor),
            SubPolicy(0.4, "color", 0, 0.6, "equalize", 3, fillcolor),
            SubPolicy(0.4, "equalize", 7, 0.2, "solarize", 4, fillcolor),
            SubPolicy(0.6, "solarize", 5, 0.6, "autocontrast", 5, fillcolor),
            SubPolicy(0.6, "invert", 4, 1.0, "equalize", 8, fillcolor),
            SubPolicy(0.6, "color", 4, 1.0, "contrast", 8, fillcolor),
            SubPolicy(0.8, "equalize", 8, 0.6, "equalize", 3, fillcolor)
        ]

    def __call__(self, img, policy_idx=None):
        if policy_idx is None or not isinstance(policy_idx, int):
            policy_idx = random.randint(0, len(self.policies) - 1)
        else:
            policy_idx = policy_idx % len(self.policies)
        return self.policies[policy_idx](img)

    def __repr__(self):
        return "AutoAugment ImageNet Policy"


class CIFAR10Policy(object):
    """ Randomly choose one of the best 25 Sub-policies on CIFAR10.

        Example:
        >>> policy = CIFAR10Policy()
        >>> transformed = policy(image)

        Example as a PyTorch Transform:
        >>> transform=transforms.Compose([
        >>>     transforms.Resize(256),
        >>>     CIFAR10Policy(),
        >>>     transforms.ToTensor()])
    """

    def __init__(self, fillcolor=(128, 128, 128)):
        self.policies = [
            SubPolicy(0.1, "invert", 7, 0.2, "contrast", 6, fillcolor),
            SubPolicy(0.7, "rotate", 2, 0.3, "translateX", 9, fillcolor),
            SubPolicy(0.8, "sharpness", 1, 0.9, "sharpness", 3, fillcolor),
            SubPolicy(0.5, "shearY", 8, 0.7, "translateY", 9, fillcolor),
            SubPolicy(0.5, "autocontrast", 8, 0.9, "equalize", 2, fillcolor),
            SubPolicy(0.2, "shearY", 7, 0.3, "posterize", 7, fillcolor),
            SubPolicy(0.4, "color", 3, 0.6, "brightness", 7, fillcolor),
            SubPolicy(0.3, "sharpness", 9, 0.7, "brightness", 9, fillcolor),
            SubPolicy(0.6, "equalize", 5, 0.5, "equalize", 1, fillcolor),
            SubPolicy(0.6, "contrast", 7, 0.6, "sharpness", 5, fillcolor),
            SubPolicy(0.7, "color", 7, 0.5, "translateX", 8, fillcolor),
            SubPolicy(0.3, "equalize", 7, 0.4, "autocontrast", 8, fillcolor),
            SubPolicy(0.4, "translateY", 3, 0.2, "sharpness", 6, fillcolor),
            SubPolicy(0.9, "brightness", 6, 0.2, "color", 8, fillcolor),
            SubPolicy(0.5, "solarize", 2, 0.0, "invert", 3, fillcolor),
            SubPolicy(0.2, "equalize", 0, 0.6, "autocontrast", 0, fillcolor),
            SubPolicy(0.2, "equalize", 8, 0.8, "equalize", 4, fillcolor),
            SubPolicy(0.9, "color", 9, 0.6, "equalize", 6, fillcolor),
            SubPolicy(0.8, "autocontrast", 4, 0.2, "solarize", 8, fillcolor),
            SubPolicy(0.1, "brightness", 3, 0.7, "color", 0, fillcolor),
            SubPolicy(0.4, "solarize", 5, 0.9, "autocontrast", 3, fillcolor),
            SubPolicy(0.9, "translateY", 9, 0.7, "translateY", 9, fillcolor),
            SubPolicy(0.9, "autocontrast", 2, 0.8, "solarize", 3, fillcolor),
            SubPolicy(0.8, "equalize", 8, 0.1, "invert", 3, fillcolor),
            SubPolicy(0.7, "translateY", 9, 0.9, "autocontrast", 1, fillcolor)
        ]

    def __call__(self, img, policy_idx=None):
        if policy_idx is None or not isinstance(policy_idx, int):
            policy_idx = random.randint(0, len(self.policies) - 1)
        else:
            policy_idx = policy_idx % len(self.policies)
        return self.policies[policy_idx](img)

    def __repr__(self):
        return "AutoAugment CIFAR10 Policy"


class SVHNPolicy(object):
    """ Randomly choose one of the best 25 Sub-policies on SVHN.

        Example:
        >>> policy = SVHNPolicy()
        >>> transformed = policy(image)

        Example as a PyTorch Transform:
        >>> transform=transforms.Compose([
        >>>     transforms.Resize(256),
        >>>     SVHNPolicy(),
        >>>     transforms.ToTensor()])
    """

    def __init__(self, fillcolor=(128, 128, 128)):
        self.policies = [
            SubPolicy(0.9, "shearX", 4, 0.2, "invert", 3, fillcolor),
            SubPolicy(0.9, "shearY", 8, 0.7, "invert", 5, fillcolor),
            SubPolicy(0.6, "equalize", 5, 0.6, "solarize", 6, fillcolor),
            SubPolicy(0.9, "invert", 3, 0.6, "equalize", 3, fillcolor),
            SubPolicy(0.6, "equalize", 1, 0.9, "rotate", 3, fillcolor),
            SubPolicy(0.9, "shearX", 4, 0.8, "autocontrast", 3, fillcolor),
            SubPolicy(0.9, "shearY", 8, 0.4, "invert", 5, fillcolor),
            SubPolicy(0.9, "shearY", 5, 0.2, "solarize", 6, fillcolor),
            SubPolicy(0.9, "invert", 6, 0.8, "autocontrast", 1, fillcolor),
            SubPolicy(0.6, "equalize", 3, 0.9, "rotate", 3, fillcolor),
            SubPolicy(0.9, "shearX", 4, 0.3, "solarize", 3, fillcolor),
            SubPolicy(0.8, "shearY", 8, 0.7, "invert", 4, fillcolor),
            SubPolicy(0.9, "equalize", 5, 0.6, "translateY", 6, fillcolor),
            SubPolicy(0.9, "invert", 4, 0.6, "equalize", 7, fillcolor),
            SubPolicy(0.3, "contrast", 3, 0.8, "rotate", 4, fillcolor),
            SubPolicy(0.8, "invert", 5, 0.0, "translateY", 2, fillcolor),
            SubPolicy(0.7, "shearY", 6, 0.4, "solarize", 8, fillcolor),
            SubPolicy(0.6, "invert", 4, 0.8, "rotate", 4, fillcolor), SubPolicy(
                0.3, "shearY", 7, 0.9, "translateX", 3, fillcolor), SubPolicy(
                    0.1, "shearX", 6, 0.6, "invert", 5, fillcolor), SubPolicy(
                        0.7, "solarize", 2, 0.6, "translateY", 7, fillcolor),
            SubPolicy(0.8, "shearY", 4, 0.8, "invert", 8, fillcolor), SubPolicy(
                0.7, "shearX", 9, 0.8, "translateY", 3, fillcolor), SubPolicy(
                    0.8, "shearY", 5, 0.7, "autocontrast", 3, fillcolor),
            SubPolicy(0.7, "shearX", 2, 0.1, "invert", 5, fillcolor)
        ]

    def __call__(self, img, policy_idx=None):
        if policy_idx is None or not isinstance(policy_idx, int):
            policy_idx = random.randint(0, len(self.policies) - 1)
        else:
            policy_idx = policy_idx % len(self.policies)
        return self.policies[policy_idx](img)

    def __repr__(self):
        return "AutoAugment SVHN Policy"


class SubPolicy(object):
    def __init__(self,
                 p1,
                 operation1,
                 magnitude_idx1,
                 p2,
                 operation2,
                 magnitude_idx2,
                 fillcolor=(128, 128, 128)):
        ranges = {
            "shearX": np.linspace(0, 0.3, 10),
            "shearY": np.linspace(0, 0.3, 10),
            "translateX": np.linspace(0, 150 / 331, 10),
            "translateY": np.linspace(0, 150 / 331, 10),
            "rotate": np.linspace(0, 30, 10),
            "color": np.linspace(0.0, 0.9, 10),
            "posterize": np.round(np.linspace(8, 4, 10), 0).astype(np.int),
            "solarize": np.linspace(256, 0, 10),
            "contrast": np.linspace(0.0, 0.9, 10),
            "sharpness": np.linspace(0.0, 0.9, 10),
            "brightness": np.linspace(0.0, 0.9, 10),
            "autocontrast": [0] * 10,
            "equalize": [0] * 10,
            "invert": [0] * 10
        }

        # from https://stackoverflow.com/questions/5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand
        def rotate_with_fill(img, magnitude):
            rot = img.convert("RGBA").rotate(magnitude)
            return Image.composite(rot,
                                   Image.new("RGBA", rot.size, (128, ) * 4),
                                   rot).convert(img.mode)

        func = {
            "shearX": lambda img, magnitude: img.transform(
                img.size, Image.AFFINE, (1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0),
                Image.BICUBIC, fillcolor=fillcolor),
            "shearY": lambda img, magnitude: img.transform(
                img.size, Image.AFFINE, (1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0),
                Image.BICUBIC, fillcolor=fillcolor),
            "translateX": lambda img, magnitude: img.transform(
                img.size, Image.AFFINE, (1, 0, magnitude * img.size[0] * random.choice([-1, 1]), 0, 1, 0),
                fillcolor=fillcolor),
            "translateY": lambda img, magnitude: img.transform(
                img.size, Image.AFFINE, (1, 0, 0, 0, 1, magnitude * img.size[1] * random.choice([-1, 1])),
                fillcolor=fillcolor),
            "rotate": lambda img, magnitude: rotate_with_fill(img, magnitude),
            # "rotate": lambda img, magnitude: img.rotate(magnitude * random.choice([-1, 1])),
            "color": lambda img, magnitude: ImageEnhance.Color(img).enhance(1 + magnitude * random.choice([-1, 1])),
            "posterize": lambda img, magnitude: ImageOps.posterize(img, magnitude),
            "solarize": lambda img, magnitude: ImageOps.solarize(img, magnitude),
            "contrast": lambda img, magnitude: ImageEnhance.Contrast(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "sharpness": lambda img, magnitude: ImageEnhance.Sharpness(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "brightness": lambda img, magnitude: ImageEnhance.Brightness(img).enhance(
                1 + magnitude * random.choice([-1, 1])),
            "autocontrast": lambda img, magnitude: ImageOps.autocontrast(img),
            "equalize": lambda img, magnitude: ImageOps.equalize(img),
            "invert": lambda img, magnitude: ImageOps.invert(img)
        }

        self.p1 = p1
        self.operation1 = func[operation1]
        self.magnitude1 = ranges[operation1][magnitude_idx1]
        self.p2 = p2
        self.operation2 = func[operation2]
        self.magnitude2 = ranges[operation2][magnitude_idx2]

    def __call__(self, img):
        if random.random() < self.p1:
            img = self.operation1(img, self.magnitude1)
        if random.random() < self.p2:
            img = self.operation2(img, self.magnitude2)
        return img