train.py 5.8 KB
Newer Older
X
Xing Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import math
import time
import random
import argparse
import multiprocessing

import numpy as np
import paddle
import paddle.fluid as fluid

np.set_printoptions(threshold=np.inf)
import reader
import utils
from sequence_labeling import lex_net, Chunk_eval
#from eval import test_process

# the function to train model
def do_train(args):

    dataset = reader.Dataset(args)
    if args.use_cuda: 
        place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    with fluid.dygraph.guard(place):
        if args.use_data_parallel:
            strategy = fluid.dygraph.parallel.prepare_context()
        #fluid.default_startup_program().random_seed = 102
        #fluid.default_main_program().random_seed = 102
        #np.random.seed(102)
        #random.seed(102)
        train_loader = reader.create_dataloader(
            args,
            file_name=args.train_data,
            place=place,
            model='lac',
            reader=dataset)
        if args.use_data_parallel:
            train_loader = fluid.contrib.reader.distributed_batch_reader(
                train_loader)

        test_loader = reader.create_dataloader(
            args,
            file_name=args.test_data,
            place=place,
            model='lac',
            reader=dataset,
            mode='test')
        model = lex_net(args, dataset.vocab_size, dataset.num_labels)
        if args.use_data_parallel:
            model = fluid.dygraph.parallel.DataParallel(model, strategy)
        optimizer = fluid.optimizer.AdamOptimizer(learning_rate=args.base_learning_rate,
                                                parameter_list=model.parameters())
        chunk_eval = Chunk_eval(int(math.ceil((dataset.num_labels - 1) / 2.0)), "IOB")
        num_train_examples = dataset.get_num_examples(args.train_data)
        max_train_steps = args.epoch * num_train_examples // args.batch_size
        print("Num train examples: %d" % num_train_examples)
        print("Max train steps: %d" % max_train_steps)

        step = 0
        print_start_time = time.time()
        chunk_evaluator = fluid.metrics.ChunkEvaluator()
        chunk_evaluator.reset()

        def test_process(reader, chunk_evaluator):
            model.eval()
            chunk_evaluator.reset()

            start_time = time.time()
            for batch in reader():
                words, targets, length = batch
                crf_decode = model(words, length=length)
                (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
                    num_correct_chunks) = chunk_eval(
                        input=crf_decode,
                        label=targets,
                        seq_length=length)
                chunk_evaluator.update(num_infer_chunks.numpy(), num_label_chunks.numpy(), num_correct_chunks.numpy())
            
            precision, recall, f1 = chunk_evaluator.eval()
            end_time = time.time()
            print("[test] P: %.5f, R: %.5f, F1: %.5f, elapsed time: %.3f s" %
                (precision, recall, f1, end_time - start_time))
            model.train()

        for epoch_id in range(args.epoch):
            for batch in train_loader():
                words, targets, length = batch

                start_time = time.time()
                avg_cost, crf_decode = model(words, targets, length)
                if args.use_data_parallel:
                    avg_cost = model.scale_loss(avg_cost)
                    avg_cost.backward()
                    model.apply_collective_grads()
                else:
                    avg_cost.backward()
                optimizer.minimize(avg_cost)
                model.clear_gradients()
                end_time = time.time()

                if step % args.print_steps == 0:
                    (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
                        num_correct_chunks) = chunk_eval(
                        input=crf_decode,
                        label=targets,
                        seq_length=length)
                    outputs = [avg_cost, precision, recall, f1_score]
                    avg_cost, precision, recall, f1_score = [np.mean(x.numpy()) for x in outputs]

                    print("[train] step = %d, loss = %.5f, P: %.5f, R: %.5f, F1: %.5f, elapsed time %.5f" % (
                        step, avg_cost, precision, recall, f1_score, end_time - start_time))

                if step % args.validation_steps == 0:
                    test_process(test_loader, chunk_evaluator)

                # save checkpoints
                if step % args.save_steps == 0 and step != 0:
                    save_path = os.path.join(args.model_save_dir, "step_" + str(step))
                    paddle.fluid.save_dygraph(model.state_dict(), save_path)
                step += 1

        

if __name__ == "__main__":
    # 参数控制可以根据需求使用argparse,yaml或者json
    # 对NLP任务推荐使用PALM下定义的configure,可以统一argparse,yaml或者json格式的配置文件。

    parser = argparse.ArgumentParser(__doc__)
    utils.load_yaml(parser, 'conf/args.yaml')

    args = parser.parse_args()

    print(args)

    do_train(args)