train_elem.py 11.0 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
K
kbChen 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import math
import time
import logging
import argparse
import functools
import threading
import subprocess
import numpy as np
import paddle
import paddle.fluid as fluid
import models
import reader
from losses import SoftmaxLoss
from losses import ArcMarginLoss
from utility import add_arguments, print_arguments
L
LielinJiang 已提交
35
from utility import fmt_time, recall_topk, get_gpu_num, check_cuda
K
kbChen 已提交
36 37 38 39 40 41 42 43 44 45 46 47

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('model', str, "ResNet50", "Set the network to use.")
add_arg('embedding_size', int, 0, "Embedding size.")
add_arg('train_batch_size', int, 256, "Minibatch size.")
add_arg('test_batch_size', int, 50, "Minibatch size.")
add_arg('image_shape', str, "3,224,224", "input image size")
add_arg('class_dim', int, 11318 , "Class number.")
add_arg('lr', float, 0.01, "set learning rate.")
add_arg('lr_strategy', str, "piecewise_decay",	"Set the learning rate decay strategy.")
K
kbChen 已提交
48
add_arg('lr_steps', str, "15000,25000", "step of lr")
K
kbChen 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
add_arg('total_iter_num', int, 30000, "total_iter_num")
add_arg('display_iter_step', int, 10, "display_iter_step.")
add_arg('test_iter_step', int, 1000, "test_iter_step.")
add_arg('save_iter_step', int, 1000, "save_iter_step.")
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('checkpoint', str, None, "Whether to resume checkpoint.")
add_arg('model_save_dir', str, "output", "model save directory")
add_arg('loss_name', str, "softmax", "Set the loss type to use.")
add_arg('arc_scale', float, 80.0, "arc scale.")
add_arg('arc_margin', float, 0.15, "arc margin.")
add_arg('arc_easy_margin', bool, False, "arc easy margin.")
add_arg('enable_ce', bool, False, "If set True, enable continuous evaluation job.")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]

def optimizer_setting(params):
    ls = params["learning_strategy"]
    assert ls["name"] == "piecewise_decay", \
           "learning rate strategy must be {}, \
           but got {}".format("piecewise_decay", lr["name"])

    bd = [int(e) for e in ls["lr_steps"].split(',')]
    base_lr = params["lr"]
    lr = [base_lr * (0.1 ** i) for i in range(len(bd) + 1)]
    optimizer = fluid.optimizer.Momentum(
        learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=lr),
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(1e-4))
    return optimizer


def net_config(image, label, model, args, is_train):
    assert args.model in model_list, "{} is not in lists: {}".format(
        args.model, model_list)

    out = model.net(input=image, embedding_size=args.embedding_size)
    if not is_train:
        return None, None, None, out

    if args.loss_name == "softmax":
        metricloss = SoftmaxLoss(
                class_dim=args.class_dim,
        )
    elif args.loss_name == "arcmargin":
        metricloss = ArcMarginLoss(
                class_dim = args.class_dim,
                margin = args.arc_margin,
                scale = args.arc_scale,
                easy_margin = args.arc_easy_margin,
        )
    cost, logit = metricloss.loss(out, label)
    avg_cost = fluid.layers.mean(x=cost)
    acc_top1 = fluid.layers.accuracy(input=logit, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=logit, label=label, k=5)
    return avg_cost, acc_top1, acc_top5, out

def build_program(is_train, main_prog, startup_prog, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    model = models.__dict__[args.model]()
    with fluid.program_guard(main_prog, startup_prog):
        if is_train:
            queue_capacity = 64
            py_reader = fluid.layers.py_reader(
                capacity=queue_capacity,
                shapes=[[-1] + image_shape, [-1, 1]],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"],
                use_double_buffer=True)
            image, label = fluid.layers.read_file(py_reader)
        else:
            image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        with fluid.unique_name.guard():
            avg_cost, acc_top1, acc_top5, out = net_config(image, label, model, args, is_train)
            if is_train:
                params = model.params
                params["lr"] = args.lr
                params["learning_strategy"]["lr_steps"] = args.lr_steps
                params["learning_strategy"]["name"] = args.lr_strategy
                optimizer = optimizer_setting(params)
                optimizer.minimize(avg_cost)
                global_lr = optimizer._global_learning_rate()
    """            
    if not is_train:
        main_prog = main_prog.clone(for_test=True)
    """
    if is_train:
        return py_reader, avg_cost, acc_top1, acc_top5, global_lr
    else: 
        return out, image, label


def train_async(args):
    # parameters from arguments

    logging.debug('enter train')
    model_name = args.model
    checkpoint = args.checkpoint
    pretrained_model = args.pretrained_model
    model_save_dir = args.model_save_dir

    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    tmp_prog = fluid.Program()

    if args.enable_ce:
        assert args.model == "ResNet50"
        assert args.loss_name == "arcmargin"
        np.random.seed(0)
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
        tmp_prog.random_seed = 1000

    train_py_reader, train_cost, train_acc1, train_acc5, global_lr = build_program(
        is_train=True,
        main_prog=train_prog,
        startup_prog=startup_prog,
        args=args)
    test_feas, image, label = build_program(
        is_train=False,
        main_prog=tmp_prog,
        startup_prog=startup_prog,
        args=args)
    test_prog = tmp_prog.clone(for_test=True)

    train_fetch_list = [global_lr.name, train_cost.name, train_acc1.name, train_acc5.name]
    test_fetch_list = [test_feas.name]

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    exe.run(startup_prog)

    logging.debug('after run startup program')

    if checkpoint is not None:
        fluid.io.load_persistables(exe, checkpoint, main_program=train_prog)

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(
            exe, pretrained_model, main_program=train_prog, predicate=if_exist)

    devicenum = get_gpu_num()
    assert (args.train_batch_size % devicenum) == 0
    train_batch_size = args.train_batch_size // devicenum
    test_batch_size = args.test_batch_size
    
    train_reader = paddle.batch(reader.train(args), batch_size=train_batch_size, drop_last=True)
    test_reader = paddle.batch(reader.test(args), batch_size=test_batch_size, drop_last=False)
    test_feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
    train_py_reader.decorate_paddle_reader(train_reader)

    train_exe = fluid.ParallelExecutor(
        main_program=train_prog,
        use_cuda=args.use_gpu,
        loss_name=train_cost.name)

    totalruntime = 0
    train_py_reader.start()
    iter_no = 0
    train_info = [0, 0, 0, 0]
    while iter_no <= args.total_iter_num:
        t1 = time.time()
        lr, loss, acc1, acc5 = train_exe.run(fetch_list=train_fetch_list)
        t2 = time.time()
        period = t2 - t1
        lr = np.mean(np.array(lr))
        train_info[0] += np.mean(np.array(loss))
        train_info[1] += np.mean(np.array(acc1))
        train_info[2] += np.mean(np.array(acc5))
        train_info[3] += 1
        if iter_no % args.display_iter_step == 0:
            avgruntime = totalruntime / args.display_iter_step
            avg_loss = train_info[0] / train_info[3]
            avg_acc1 = train_info[1] / train_info[3]
            avg_acc5 = train_info[2] / train_info[3]
            print("[%s] trainbatch %d, lr %.6f, loss %.6f, "\
                    "acc1 %.4f, acc5 %.4f, time %2.2f sec" % \
                    (fmt_time(), iter_no, lr, avg_loss, avg_acc1, avg_acc5, avgruntime))
            sys.stdout.flush()
            totalruntime = 0
        if iter_no % 1000 == 0:
            train_info = [0, 0, 0, 0]

        totalruntime += period
        
        if iter_no % args.test_iter_step == 0 and iter_no != 0:
            f, l = [], []
            for batch_id, data in enumerate(test_reader()):
                t1 = time.time()
                [feas] = exe.run(test_prog, fetch_list = test_fetch_list, feed=test_feeder.feed(data))
                label = np.asarray([x[1] for x in data])
                f.append(feas)
                l.append(label)

                t2 = time.time()
                period = t2 - t1
                if batch_id % 20 == 0:
                    print("[%s] testbatch %d, time %2.2f sec" % \
                            (fmt_time(), batch_id, period))

            f = np.vstack(f)
            l = np.hstack(l)
            recall = recall_topk(f, l, k=1)
            print("[%s] test_img_num %d, trainbatch %d, test_recall %.5f" % \
                    (fmt_time(), len(f), iter_no, recall))
            sys.stdout.flush()

        if iter_no % args.save_iter_step == 0 and iter_no != 0:
            model_path = os.path.join(model_save_dir + '/' + model_name,
                                      str(iter_no))
            if not os.path.isdir(model_path):
                os.makedirs(model_path)
            fluid.io.save_persistables(exe, model_path, main_program=train_prog)

        iter_no += 1

    # This is for continuous evaluation only
    if args.enable_ce:
        # Use the mean cost/acc for training
u010070587's avatar
u010070587 已提交
277 278
        print("kpis\ttrain_cost\t{}".format(avg_loss))
        print("kpis\ttest_recall\t{}".format(recall))
K
kbChen 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294


def initlogging():
    for handler in logging.root.handlers[:]:
        logging.root.removeHandler(handler)
    loglevel = logging.DEBUG
    logging.basicConfig(
        level=loglevel,
        # logger.BASIC_FORMAT,
        format=
        "%(levelname)s:%(filename)s[%(lineno)s] %(name)s:%(funcName)s->%(message)s",
        datefmt='%a, %d %b %Y %H:%M:%S')

def main():
    args = parser.parse_args()
    print_arguments(args)
L
LielinJiang 已提交
295
    check_cuda(args.use_gpu)
K
kbChen 已提交
296 297 298 299 300
    train_async(args)


if __name__ == '__main__':
    main()