base_network.py 19.8 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import division
import paddle.fluid as fluid
import numpy as np
L
lvmengsi 已提交
18
import math
L
lvmengsi 已提交
19
import os
L
lvmengsi 已提交
20
import warnings
L
lvmengsi 已提交
21 22 23 24 25 26

use_cudnn = True
if 'ce_mode' in os.environ:
    use_cudnn = False


L
lvmengsi 已提交
27 28 29 30 31 32 33 34 35 36
def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    valid_filter_size = dilation * (filter_size - 1) + 1
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


L
lvmengsi 已提交
37 38 39 40 41
def norm_layer(input,
               norm_type='batch_norm',
               name=None,
               is_test=False,
               affine=True):
L
lvmengsi 已提交
42
    if norm_type == 'batch_norm':
Z
zhumanyu 已提交
43 44 45 46
        if affine == True:
            param_attr = fluid.ParamAttr(
                name=name + '_w', initializer=fluid.initializer.Constant(1.0))
            bias_attr = fluid.ParamAttr(
L
lvmengsi 已提交
47 48
                name=name + '_b',
                initializer=fluid.initializer.Constant(value=0.0))
Z
zhumanyu 已提交
49 50
        else:
            param_attr = fluid.ParamAttr(
L
lvmengsi 已提交
51 52 53
                name=name + '_w',
                initializer=fluid.initializer.Constant(1.0),
                trainable=False)
Z
zhumanyu 已提交
54
            bias_attr = fluid.ParamAttr(
L
lvmengsi 已提交
55 56 57
                name=name + '_b',
                initializer=fluid.initializer.Constant(value=0.0),
                trainable=False)
L
lvmengsi 已提交
58 59 60 61
        return fluid.layers.batch_norm(
            input,
            param_attr=param_attr,
            bias_attr=bias_attr,
L
lvmengsi 已提交
62
            is_test=is_test,
L
lvmengsi 已提交
63 64 65 66 67 68 69
            moving_mean_name=name + '_mean',
            moving_variance_name=name + '_var')

    elif norm_type == 'instance_norm':
        if name is not None:
            scale_name = name + "_scale"
            offset_name = name + "_offset"
Z
zhumanyu 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        if affine:
            scale_param = fluid.ParamAttr(
                name=scale_name,
                initializer=fluid.initializer.Constant(1.0),
                trainable=True)
            offset_param = fluid.ParamAttr(
                name=offset_name,
                initializer=fluid.initializer.Constant(0.0),
                trainable=True)
        else:
            scale_param = fluid.ParamAttr(
                name=scale_name,
                initializer=fluid.initializer.Constant(1.0),
                trainable=False)
            offset_param = fluid.ParamAttr(
                name=offset_name,
                initializer=fluid.initializer.Constant(0.0),
                trainable=False)
C
ceci3 已提交
88 89
        return fluid.layers.instance_norm(
            input, param_attr=scale_param, bias_attr=offset_param)
L
lvmengsi 已提交
90
    else:
L
lvmengsi 已提交
91
        raise NotImplementedError("norm type: [%s] is not support" % norm_type)
L
lvmengsi 已提交
92 93


L
lvmengsi 已提交
94
def initial_type(name,
L
lvmengsi 已提交
95 96 97
                 input,
                 op_type,
                 fan_out,
L
lvmengsi 已提交
98 99 100 101 102
                 init="normal",
                 use_bias=False,
                 filter_size=0,
                 stddev=0.02):
    if init == "kaiming":
L
lvmengsi 已提交
103 104 105 106 107 108 109 110 111
        if op_type == 'conv':
            fan_in = input.shape[1] * filter_size * filter_size
        elif op_type == 'deconv':
            fan_in = fan_out * filter_size * filter_size
        else:
            if len(input.shape) > 2:
                fan_in = input.shape[1] * input.shape[2] * input.shape[3]
            else:
                fan_in = input.shape[1]
L
lvmengsi 已提交
112 113 114
        bound = 1 / math.sqrt(fan_in)
        param_attr = fluid.ParamAttr(
            name=name + "_w",
L
lvmengsi 已提交
115 116
            initializer=fluid.initializer.Uniform(
                low=-bound, high=bound))
L
lvmengsi 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + '_b',
                initializer=fluid.initializer.Uniform(
                    low=-bound, high=bound))
        else:
            bias_attr = False
    else:
        param_attr = fluid.ParamAttr(
            name=name + "_w",
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=stddev))
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + "_b", initializer=fluid.initializer.Constant(0.0))
        else:
            bias_attr = False
    return param_attr, bias_attr


L
lvmengsi 已提交
137 138 139 140 141 142 143 144 145
def conv2d(input,
           num_filters=64,
           filter_size=7,
           stride=1,
           stddev=0.02,
           padding=0,
           name="conv2d",
           norm=None,
           activation_fn=None,
L
lvmengsi 已提交
146
           relufactor=0.2,
L
lvmengsi 已提交
147 148
           use_bias=False,
           padding_type=None,
L
lvmengsi 已提交
149 150
           initial="normal",
           is_test=False):
L
lvmengsi 已提交
151 152 153 154 155 156 157 158

    if padding != 0 and padding_type != None:
        warnings.warn(
            'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
        )

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
159 160 161
        input=input,
        op_type='conv',
        fan_out=num_filters,
L
lvmengsi 已提交
162 163 164 165 166 167 168 169 170
        init=initial,
        use_bias=use_bias,
        filter_size=filter_size,
        stddev=stddev)

    need_crop = False
    if padding_type == "SAME":
        top_padding, bottom_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
L
lvmengsi 已提交
171
        left_padding, right_padding = cal_padding(input.shape[3], stride,
L
lvmengsi 已提交
172 173 174 175 176 177 178 179 180 181 182 183
                                                  filter_size)
        height_padding = bottom_padding
        width_padding = right_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            height_padding = top_padding + stride
            width_padding = left_padding + stride
            need_crop = True
        padding = [height_padding, width_padding]
    elif padding_type == "VALID":
        height_padding = 0
        width_padding = 0
        padding = [height_padding, width_padding]
L
lvmengsi 已提交
184
    else:
L
lvmengsi 已提交
185
        padding = padding
L
lvmengsi 已提交
186 187 188 189 190 191 192 193 194 195 196

    conv = fluid.layers.conv2d(
        input,
        num_filters,
        filter_size,
        name=name,
        stride=stride,
        padding=padding,
        use_cudnn=use_cudnn,
        param_attr=param_attr,
        bias_attr=bias_attr)
L
lvmengsi 已提交
197 198 199 200 201
    if need_crop:
        conv = fluid.layers.crop(
            conv,
            shape=(-1, conv.shape[1], conv.shape[2] - 1, conv.shape[3] - 1),
            offsets=(0, 0, 1, 1))
L
lvmengsi 已提交
202
    if norm is not None:
L
lvmengsi 已提交
203 204
        conv = norm_layer(
            input=conv, norm_type=norm, name=name + "_norm", is_test=is_test)
L
lvmengsi 已提交
205 206 207
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
L
lvmengsi 已提交
208 209 210
        if relufactor == 0.0:
            raise Warning(
                "the activation is leaky_relu, but the relufactor is 0")
L
lvmengsi 已提交
211 212 213 214
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
L
lvmengsi 已提交
215 216
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
L
lvmengsi 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return conv


def deconv2d(input,
             num_filters=64,
             filter_size=7,
             stride=1,
             stddev=0.02,
L
lvmengsi 已提交
231
             padding=0,
L
lvmengsi 已提交
232 233 234 235
             outpadding=[0, 0, 0, 0],
             name="deconv2d",
             norm=None,
             activation_fn=None,
L
lvmengsi 已提交
236
             relufactor=0.2,
L
lvmengsi 已提交
237
             use_bias=False,
L
lvmengsi 已提交
238 239
             padding_type=None,
             output_size=None,
L
lvmengsi 已提交
240 241
             initial="normal",
             is_test=False):
L
lvmengsi 已提交
242 243 244 245 246 247 248 249

    if padding != 0 and padding_type != None:
        warnings.warn(
            'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
        )

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
250 251 252
        input=input,
        op_type='deconv',
        fan_out=num_filters,
L
lvmengsi 已提交
253 254 255 256 257 258 259 260 261
        init=initial,
        use_bias=use_bias,
        filter_size=filter_size,
        stddev=stddev)

    need_crop = False
    if padding_type == "SAME":
        top_padding, bottom_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
L
lvmengsi 已提交
262
        left_padding, right_padding = cal_padding(input.shape[3], stride,
L
lvmengsi 已提交
263 264 265 266 267 268 269 270 271 272 273 274
                                                  filter_size)
        height_padding = bottom_padding
        width_padding = right_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            height_padding = top_padding + stride
            width_padding = left_padding + stride
            need_crop = True
        padding = [height_padding, width_padding]
    elif padding_type == "VALID":
        height_padding = 0
        width_padding = 0
        padding = [height_padding, width_padding]
L
lvmengsi 已提交
275
    else:
L
lvmengsi 已提交
276
        padding = padding
L
lvmengsi 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289

    conv = fluid.layers.conv2d_transpose(
        input,
        num_filters,
        output_size=output_size,
        name=name,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        use_cudnn=use_cudnn,
        param_attr=param_attr,
        bias_attr=bias_attr)

L
lvmengsi 已提交
290
    if np.mean(outpadding) != 0 and padding_type == None:
L
lvmengsi 已提交
291 292
        conv = fluid.layers.pad2d(
            conv, paddings=outpadding, mode='constant', pad_value=0.0)
L
lvmengsi 已提交
293 294

    if norm is not None:
L
lvmengsi 已提交
295 296
        conv = norm_layer(
            input=conv, norm_type=norm, name=name + "_norm", is_test=is_test)
L
lvmengsi 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        if relufactor == 0.0:
            raise Warning(
                "the activation is leaky_relu, but the relufactor is 0")
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return conv


def linear(input,
           output_size,
           norm=None,
           stddev=0.02,
           activation_fn=None,
           relufactor=0.2,
L
lvmengsi 已提交
324
           name="linear",
L
lvmengsi 已提交
325 326
           initial="normal",
           is_test=False):
L
lvmengsi 已提交
327 328 329

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
330 331 332
        input=input,
        op_type='linear',
        fan_out=output_size,
L
lvmengsi 已提交
333 334 335 336 337
        init=initial,
        use_bias=True,
        filter_size=1,
        stddev=stddev)

L
lvmengsi 已提交
338 339 340 341 342 343 344
    linear = fluid.layers.fc(input,
                             output_size,
                             param_attr=param_attr,
                             bias_attr=bias_attr,
                             name=name)

    if norm is not None:
L
lvmengsi 已提交
345 346
        linear = norm_layer(
            input=linear, norm_type=norm, name=name + '_norm', is_test=is_test)
L
lvmengsi 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    if activation_fn == 'relu':
        linear = fluid.layers.relu(linear, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        if relufactor == 0.0:
            raise Warning(
                "the activation is leaky_relu, but the relufactor is 0")
        linear = fluid.layers.leaky_relu(
            linear, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        linear = fluid.layers.tanh(linear, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        linear = fluid.layers.sigmoid(linear, name=name + '_sigmoid')
    elif activation_fn == None:
        linear = linear
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return linear


def conv_cond_concat(x, y):
    ones = fluid.layers.fill_constant_batch_size_like(
        x, [-1, y.shape[1], x.shape[2], x.shape[3]], "float32", 1.0)
    out = fluid.layers.concat([x, ones * y], 1)
    return out


def conv_and_pool(x, num_filters, name, stddev=0.02, act=None):
    param_attr = fluid.ParamAttr(
        name=name + '_w',
        initializer=fluid.initializer.NormalInitializer(
            loc=0.0, scale=stddev))
    bias_attr = fluid.ParamAttr(
        name=name + "_b", initializer=fluid.initializer.Constant(0.0))

    out = fluid.nets.simple_img_conv_pool(
        input=x,
        filter_size=5,
        num_filters=num_filters,
        pool_size=2,
        pool_stride=2,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act)
    return out
L
lvmengsi 已提交
393 394


Z
zhumanyu 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407
def conv2d_spectral_norm(input,
                         num_filters=64,
                         filter_size=7,
                         stride=1,
                         stddev=0.02,
                         padding=0,
                         name="conv2d_spectral_norm",
                         norm=None,
                         activation_fn=None,
                         relufactor=0.0,
                         use_bias=False,
                         padding_type=None,
                         initial="normal",
L
lvmengsi 已提交
408 409
                         is_test=False,
                         norm_affine=True):
Z
zhumanyu 已提交
410 411 412 413 414 415
    b, c, h, w = input.shape
    height = num_filters
    width = c * filter_size * filter_size
    helper = fluid.layer_helper.LayerHelper("conv2d_spectral_norm", **locals())
    dtype = helper.input_dtype()
    weight_param = fluid.ParamAttr(
L
lvmengsi 已提交
416
        name=name + ".weight_orig",
L
lvmengsi 已提交
417 418
        initializer=fluid.initializer.Normal(
            loc=0.0, scale=1.0),
Z
zhumanyu 已提交
419 420
        trainable=True)
    weight = helper.create_parameter(
L
lvmengsi 已提交
421 422 423 424 425
        attr=weight_param,
        shape=(num_filters, c, filter_size, filter_size),
        dtype=dtype)
    weight_spectral_norm = fluid.layers.spectral_norm(
        weight, dim=0, name=name + ".spectral_norm")
Z
zhumanyu 已提交
426 427 428
    weight = weight_spectral_norm
    if use_bias:
        bias_attr = fluid.ParamAttr(
L
lvmengsi 已提交
429 430 431
            name=name + "_b",
            initializer=fluid.initializer.Normal(
                loc=0.0, scale=1.0))
Z
zhumanyu 已提交
432 433
    else:
        bias_attr = False
L
lvmengsi 已提交
434 435
    conv = conv2d_with_filter(
        input, weight, stride, padding, bias_attr=bias_attr, name=name)
Z
zhumanyu 已提交
436 437
    if norm is not None:
        conv = norm_layer(
L
lvmengsi 已提交
438 439 440 441 442
            input=conv,
            norm_type=norm,
            name=name + "_norm",
            is_test=is_test,
            affine=norm_affine)
Z
zhumanyu 已提交
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)
    return conv


def conv2d_with_filter(input,
                       filter,
                       stride=1,
                       padding=0,
                       dilation=1,
                       groups=None,
                       bias_attr=None,
                       use_cudnn=True,
                       act=None,
                       name=None):
    """ 
    Similar with conv2d, this is a convolution2D layers. Difference
    is filter can be token as input directly instead of setting filter size
    and number of fliters. Filter is a  4-D tensor with shape 
    [num_filter, num_channel, filter_size_h, filter_size_w].
     Args:
        input (Variable): The input image with [N, C, H, W] format.
        filter(Variable): The input filter with [N, C, H, W] format.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python
          data = fluid.layers.data(name='data', shape=[3, 32, 32], \
                                  dtype='float32')
          filter = fluid.layers.data(name='filter',shape=[10,3,3,3], \
                                    dtype='float32',append_batch_size=False)
          conv2d = fluid.layers.conv2d(input=data, 
                                       filter=filter,
                                       act="relu") 
    """
    helper = fluid.layer_helper.LayerHelper("conv2d_with_filter", **locals())
    num_channels = input.shape[1]
    num_filters = filter.shape[0]
    num_filter_channels = filter.shape[1]
    l_type = 'conv2d'
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
        l_type = 'depthwise_conv2d'
    if groups is None:
        assert num_filter_channels == num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        if num_channels // groups != num_filter_channels:
            raise ValueError("num_filter_channels must equal to num_channels\
                              divided by groups.")
    stride = fluid.layers.utils.convert_to_list(stride, 2, 'stride')
    padding = fluid.layers.utils.convert_to_list(padding, 2, 'padding')
    dilation = fluid.layers.utils.convert_to_list(dilation, 2, 'dilation')
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False
        })
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return helper.append_activation(pre_act)