roipool3d_utils.pyx 5.8 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
 
import numpy as np 
cimport numpy as np 
cimport cython 
from libc.math cimport sin, cos 

@cython.boundscheck(False)
@cython.wraparound(False)
cdef enlarge_box3d(np.ndarray boxes3d, int extra_width):
    """
    :param boxes3d: (N, 7) [x, y, z, h, w, l, ry]
    """
    if isinstance(boxes3d, np.ndarray):
        large_boxes3d = boxes3d.copy()
    else:
        large_boxes3d = boxes3d.clone()
    large_boxes3d[:, 3:6] += extra_width * 2
    large_boxes3d[:, 1] += extra_width
    return large_boxes3d

@cython.boundscheck(False)
@cython.wraparound(False)
cdef pt_in_box(float x, float y, float z, float cx, float bottom_y, float cz, float h, float w, float l, float angle):
    cdef float max_ids = 10.0
    cdef float cy = bottom_y - h / 2.0
    if ((abs(x - cx) > max_ids) or (abs(y - cy) > h / 2.0) or (abs(z - cz) > max_ids)):
        return 0
    cdef float cosa = cos(angle)
    cdef float sina = sin(angle)
    cdef float x_rot = (x - cx) * cosa + (z - cz) * (-sina)

    cdef float z_rot = (x - cx) * sina + (z - cz) * cosa

    cdef float flag = (x_rot >= -l / 2.0) and (x_rot <= l / 2.0) and (z_rot >= -w / 2.0) and (z_rot <= w / 2.0)
    return flag

@cython.boundscheck(False)
@cython.wraparound(False)
cdef _rotate_pc_along_y(np.ndarray pc, float rot_angle):
    """
    params pc: (N, 3+C), (N, 3) is in the rectified camera coordinate
    params rot_angle: rad scalar
    Output pc: updated pc with XYZ rotated
    """
    cosval = np.cos(rot_angle)
    sinval = np.sin(rot_angle)
    rotmat = np.array([[cosval, -sinval], [sinval, cosval]])
    pc[:, [0, 2]] = np.dot(pc[:, [0, 2]], np.transpose(rotmat))
    return pc

@cython.boundscheck(False)
@cython.wraparound(False)
def roipool3d_cpu(
        np.ndarray[float, ndim=2] pts, 
        np.ndarray[float, ndim=2] pts_feature, 
        np.ndarray[float, ndim=2] boxes3d, 
        np.ndarray[float, ndim=2] pts_extra_input, 
        int pool_extra_width, int sampled_pt_num, int batch_size=1, bint canonical_transform=False):
    cdef np.ndarray pts_feature_all = np.concatenate((pts_extra_input, pts_feature), axis=1)

    cdef np.ndarray larged_boxes3d = enlarge_box3d(boxes3d.reshape(-1, 7), pool_extra_width).reshape(batch_size, -1, 7)

    cdef int pts_num  = pts.shape[0], 
    cdef int boxes_num = boxes3d.shape[0] 
    cdef int feature_len = pts_feature_all.shape[1]
    cdef np.ndarray pts_data = np.zeros((batch_size, boxes_num, sampled_pt_num, 3))
    cdef np.ndarray features_data = np.zeros((batch_size, boxes_num, sampled_pt_num, feature_len))
    cdef np.ndarray empty_flag_data = np.zeros((batch_size, boxes_num))
    
    cdef int cnt = 0
    cdef float cx = 0.
    cdef float bottom_y = 0.
    cdef float cz = 0.
    cdef float h = 0.
    cdef float w = 0.
    cdef float l = 0.
    cdef float ry = 0.
    cdef float x = 0. 
    cdef float y = 0.
    cdef float z = 0.
    cdef np.ndarray x_i
    cdef np.ndarray feat_i 
    cdef int bs
    cdef int i 
    cdef int j 
    for bs in range(batch_size):
        # boxes: 64,7
        for i in range(boxes_num):
            cnt = 0
            # box
            box = larged_boxes3d[bs][i]
            cx = box[0]
            bottom_y = box[1]
            cz = box[2]
            h = box[3]
            w = box[4]
            l = box[5]
            ry = box[6]
            # points: 16384,3  
            x_i = pts
            # features: 16384, 128 
            feat_i = pts_feature_all
            
            for j in range(pts_num):
                x = x_i[j][0]
                y = x_i[j][1]
                z = x_i[j][2]
                cur_in_flag = pt_in_box(x,y,z,cx,bottom_y,cz,h,w,l,ry)
                if cur_in_flag:
                    if cnt < sampled_pt_num:
                        pts_data[bs][i][cnt][:] = x_i[j]
                        features_data[bs][i][cnt][:] = feat_i[j]
                        cnt += 1
                    else:
                        break 

            if cnt == 0:
                empty_flag_data[bs][i] = 1
            elif (cnt < sampled_pt_num):
                for k in range(cnt, sampled_pt_num):
                    pts_data[bs][i][k] = pts_data[bs][i][k % cnt]
                    features_data[bs][i][k] = features_data[bs][i][k % cnt]


    pooled_pts = pts_data.astype("float32")[0]
    pooled_features = features_data.astype('float32')[0]
    pooled_empty_flag = empty_flag_data.astype('int64')[0]

    cdef int extra_input_len = pts_extra_input.shape[1]
    pooled_pts = np.concatenate((pooled_pts, pooled_features[:,:,0:extra_input_len]),axis=2)
    pooled_features = pooled_features[:,:,extra_input_len:]
    
    if canonical_transform:
        # Translate to the roi coordinates
        roi_ry = boxes3d[:, 6] % (2 * np.pi)  # 0~2pi
        roi_center = boxes3d[:, 0:3]
        # shift to center
        pooled_pts[:, :, 0:3] = pooled_pts[:, :, 0:3] - roi_center[:, np.newaxis, :]
        for k in range(pooled_pts.shape[0]):
            pooled_pts[k] = _rotate_pc_along_y(pooled_pts[k], roi_ry[k])
        return pooled_pts, pooled_features, pooled_empty_flag

    return pooled_pts, pooled_features, pooled_empty_flag


#def roipool3d_cpu(pts, pts_feature, boxes3d, pts_extra_input, pool_extra_width, sampled_pt_num=512, batch_size=1):
#    return _roipool3d_cpu(pts, pts_feature, boxes3d, pts_extra_input, pool_extra_width, sampled_pt_num, batch_size)