default.yml 3.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
# This config is based on https://github.com/sshaoshuai/PointRCNN/blob/master/tools/cfgs/default.yaml
CLASSES: Car

INCLUDE_SIMILAR_TYPE: True

# config of augmentation
AUG_DATA: True
AUG_METHOD_LIST: ['rotation', 'scaling', 'flip']
AUG_METHOD_PROB: [1.0, 1.0, 0.5]
AUG_ROT_RANGE: 18

GT_AUG_ENABLED: True
GT_EXTRA_NUM: 15
GT_AUG_RAND_NUM: True
GT_AUG_APPLY_PROB: 1.0
GT_AUG_HARD_RATIO: 0.6

PC_REDUCE_BY_RANGE: True
PC_AREA_SCOPE: [[-40, 40], [-1,   3], [0, 70.4]]  # x, y, z scope in rect camera coords
CLS_MEAN_SIZE: [[1.52563191462, 1.62856739989, 3.88311640418]]


# 1. config of rpn network
RPN:
    ENABLED: True
    FIXED: False

    # config of input
    USE_INTENSITY: False

    # config of bin-based loss
    LOC_XZ_FINE: True
    LOC_SCOPE: 3.0
    LOC_BIN_SIZE: 0.5
    NUM_HEAD_BIN: 12

    # config of network structure
    BACKBONE: pointnet2_msg
    USE_BN: True
    NUM_POINTS: 16384

    SA_CONFIG:
        NPOINTS: [4096, 1024, 256, 64]
        RADIUS: [[0.1, 0.5], [0.5, 1.0], [1.0, 2.0], [2.0, 4.0]]
        NSAMPLE: [[16, 32], [16, 32], [16, 32], [16, 32]]
        MLPS: [[[16, 16, 32], [32, 32, 64]],
              [[64, 64, 128], [64, 96, 128]],
              [[128, 196, 256], [128, 196, 256]],
              [[256, 256, 512], [256, 384, 512]]]
    FP_MLPS: [[128, 128], [256, 256], [512, 512], [512, 512]]
    CLS_FC: [128]
    REG_FC: [128]
    DP_RATIO: 0.5

    # config of training
    LOSS_CLS: SigmoidFocalLoss
    FG_WEIGHT: 15
    FOCAL_ALPHA: [0.25, 0.75]
    FOCAL_GAMMA: 2.0
    REG_LOSS_WEIGHT: [1.0, 1.0, 1.0, 1.0]
    LOSS_WEIGHT: [1.0, 1.0]
    NMS_TYPE: normal

    # config of testing
    SCORE_THRESH: 0.3

# 2. config of rcnn network
RCNN:
    ENABLED: True

    # config of input
    ROI_SAMPLE_JIT: False 
    REG_AUG_METHOD: multiple  # multiple, single, normal
    ROI_FG_AUG_TIMES: 10

    USE_RPN_FEATURES: True
    USE_MASK: True
    MASK_TYPE: seg
    USE_INTENSITY: False
    USE_DEPTH: True
    USE_SEG_SCORE: False

    POOL_EXTRA_WIDTH: 1.0

    # config of bin-based loss
    LOC_SCOPE: 1.5
    LOC_BIN_SIZE: 0.5
    NUM_HEAD_BIN: 9
    LOC_Y_BY_BIN: False
    LOC_Y_SCOPE: 0.5
    LOC_Y_BIN_SIZE: 0.25
    SIZE_RES_ON_ROI: False

    # config of network structure
    USE_BN: False
    DP_RATIO: 0.0

    BACKBONE: pointnet  # pointnet
    XYZ_UP_LAYER: [128, 128]

    NUM_POINTS: 512
    SA_CONFIG:
        NPOINTS: [128, 32, -1]
        RADIUS: [0.2, 0.4, 100]
        NSAMPLE: [64, 64, 64]
        MLPS: [[128, 128, 128],
               [128, 128, 256],
               [256, 256, 512]]
    CLS_FC: [256, 256]
    REG_FC: [256, 256]

    # config of training
    LOSS_CLS: BinaryCrossEntropy
    FOCAL_ALPHA: [0.25, 0.75]
    FOCAL_GAMMA: 2.0
    CLS_WEIGHT: [1.0, 1.0, 1.0]
    CLS_FG_THRESH: 0.6
    CLS_BG_THRESH: 0.45
    CLS_BG_THRESH_LO: 0.05
    REG_FG_THRESH: 0.55
    FG_RATIO: 0.5
    ROI_PER_IMAGE: 64
    HARD_BG_RATIO: 0.8

    # config of testing
    SCORE_THRESH: 0.3
    NMS_THRESH: 0.1

# general training config
TRAIN:
    SPLIT: train
    VAL_SPLIT: smallval

    LR: 0.002
    LR_CLIP: 0.00001
    LR_DECAY: 0.5
    DECAY_STEP_LIST: [100, 150, 180, 200]
    LR_WARMUP: True
    WARMUP_MIN: 0.0002
    WARMUP_EPOCH: 1

    BN_MOMENTUM: 0.1
    BN_DECAY: 0.5
    BNM_CLIP: 0.01
    BN_DECAY_STEP_LIST: [1000]

    OPTIMIZER: adam # adam, adam_onecycle
    WEIGHT_DECAY: 0.001  # L2 regularization
    MOMENTUM: 0.9

    MOMS: [0.95, 0.85]
    DIV_FACTOR: 10.0
    PCT_START: 0.4

    GRAD_NORM_CLIP: 1.0

    RPN_PRE_NMS_TOP_N: 9000
    RPN_POST_NMS_TOP_N: 512
    RPN_NMS_THRESH: 0.85
    RPN_DISTANCE_BASED_PROPOSE: True

TEST:
    SPLIT: val
    RPN_PRE_NMS_TOP_N: 9000
    RPN_POST_NMS_TOP_N: 100
    RPN_NMS_THRESH: 0.8
    RPN_DISTANCE_BASED_PROPOSE: True