fpn.py 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

from paddle import fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.regularizer import L2Decay

from ppdet.core.workspace import register

__all__ = ['FPN']


@register
class FPN(object):
    """
    Feature Pyramid Network, see https://arxiv.org/abs/1612.03144

    Args:
        num_chan (int): number of feature channels
        min_level (int): lowest level of the backbone feature map to use
        max_level (int): highest level of the backbone feature map to use
        spatial_scale (list): feature map scaling factor
        has_extra_convs (bool): whether has extral convolutions in higher levels
    """

    def __init__(self,
                 num_chan=256,
                 min_level=2,
                 max_level=6,
                 spatial_scale=[1. / 32., 1. / 16., 1. / 8., 1. / 4.],
                 has_extra_convs=False):
        self.num_chan = num_chan
        self.min_level = min_level
        self.max_level = max_level
        self.spatial_scale = spatial_scale
        self.has_extra_convs = has_extra_convs

    def _add_topdown_lateral(self, body_name, body_input, upper_output):
        lateral_name = 'fpn_inner_' + body_name + '_lateral'
        topdown_name = 'fpn_topdown_' + body_name
        fan = body_input.shape[1]
        lateral = fluid.layers.conv2d(
            body_input,
            self.num_chan,
            1,
            param_attr=ParamAttr(
                name=lateral_name + "_w", initializer=Xavier(fan_out=fan)),
            bias_attr=ParamAttr(
                name=lateral_name + "_b",
                learning_rate=2.,
                regularizer=L2Decay(0.)),
            name=lateral_name)
        shape = fluid.layers.shape(upper_output)
        shape_hw = fluid.layers.slice(shape, axes=[0], starts=[2], ends=[4])
        out_shape_ = shape_hw * 2
        out_shape = fluid.layers.cast(out_shape_, dtype='int32')
        out_shape.stop_gradient = True
        topdown = fluid.layers.resize_nearest(
            upper_output, scale=2., actual_shape=out_shape, name=topdown_name)

        return lateral + topdown

    def get_output(self, body_dict):
        """
        Add FPN onto backbone.

        Args:
            body_dict(OrderedDict): Dictionary of variables and each element is the
                output of backbone.

        Return:
            fpn_dict(OrderedDict): A dictionary represents the output of FPN with
                their name.
            spatial_scale(list): A list of multiplicative spatial scale factor.
        """
        body_name_list = list(body_dict.keys())[::-1]
        num_backbone_stages = len(body_name_list)
        self.fpn_inner_output = [[] for _ in range(num_backbone_stages)]
        fpn_inner_name = 'fpn_inner_' + body_name_list[0]
        body_input = body_dict[body_name_list[0]]
        fan = body_input.shape[1]
        self.fpn_inner_output[0] = fluid.layers.conv2d(
            body_input,
            self.num_chan,
            1,
            param_attr=ParamAttr(
                name=fpn_inner_name + "_w", initializer=Xavier(fan_out=fan)),
            bias_attr=ParamAttr(
                name=fpn_inner_name + "_b",
                learning_rate=2.,
                regularizer=L2Decay(0.)),
            name=fpn_inner_name)
        for i in range(1, num_backbone_stages):
            body_name = body_name_list[i]
            body_input = body_dict[body_name]
            top_output = self.fpn_inner_output[i - 1]
            fpn_inner_single = self._add_topdown_lateral(body_name, body_input,
                                                         top_output)
            self.fpn_inner_output[i] = fpn_inner_single
        fpn_dict = {}
        fpn_name_list = []
        for i in range(num_backbone_stages):
            fpn_name = 'fpn_' + body_name_list[i]
            fan = self.fpn_inner_output[i].shape[1] * 3 * 3
            fpn_output = fluid.layers.conv2d(
                self.fpn_inner_output[i],
                self.num_chan,
                filter_size=3,
                padding=1,
                param_attr=ParamAttr(
                    name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
                bias_attr=ParamAttr(
                    name=fpn_name + "_b",
                    learning_rate=2.,
                    regularizer=L2Decay(0.)),
                name=fpn_name)
            fpn_dict[fpn_name] = fpn_output
            fpn_name_list.append(fpn_name)
        if not self.has_extra_convs and self.max_level - self.min_level == len(
                self.spatial_scale):
            body_top_name = fpn_name_list[0]
            body_top_extension = fluid.layers.pool2d(
                fpn_dict[body_top_name],
                1,
                'max',
                pool_stride=2,
                name=body_top_name + '_subsampled_2x')
            fpn_dict[body_top_name + '_subsampled_2x'] = body_top_extension
            fpn_name_list.insert(0, body_top_name + '_subsampled_2x')
            self.spatial_scale.insert(0, self.spatial_scale[0] * 0.5)
        # Coarser FPN levels introduced for RetinaNet
        highest_backbone_level = self.min_level + len(self.spatial_scale) - 1
        if self.has_extra_convs and self.max_level > highest_backbone_level:
            fpn_blob = body_dict[body_name_list[0]]
            for i in range(highest_backbone_level + 1, self.max_level + 1):
                fpn_blob_in = fpn_blob
                fpn_name = 'fpn_' + str(i)
                if i > highest_backbone_level + 1:
                    fpn_blob_in = fluid.layers.relu(fpn_blob)
                fan = fpn_blob_in.shape[1] * 3 * 3
                fpn_blob = fluid.layers.conv2d(
                    input=fpn_blob_in,
                    num_filters=self.num_chan,
                    filter_size=3,
                    stride=2,
                    padding=1,
                    param_attr=ParamAttr(
                        name=fpn_name + "_w", initializer=Xavier(fan_out=fan)),
                    bias_attr=ParamAttr(
                        name=fpn_name + "_b",
                        learning_rate=2.,
                        regularizer=L2Decay(0.)),
                    name=fpn_name)
                fpn_dict[fpn_name] = fpn_blob
                fpn_name_list.insert(0, fpn_name)
                self.spatial_scale.insert(0, self.spatial_scale[0] * 0.5)
        res_dict = OrderedDict([(k, fpn_dict[k]) for k in fpn_name_list])
        return res_dict, self.spatial_scale