tune.py 7.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4
"""Parameters tuning for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
5 6 7 8 9

import paddle.v2 as paddle
import distutils.util
import argparse
import gzip
Y
Yibing Liu 已提交
10
from data_utils.data import DataGenerator
11 12 13 14
from model import deep_speech2
from decoder import *
from error_rate import wer

Y
Yibing Liu 已提交
15
parser = argparse.ArgumentParser(description=__doc__)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
parser.add_argument(
    "--num_samples",
    default=100,
    type=int,
    help="Number of samples for parameters tuning. (default: %(default)s)")
parser.add_argument(
    "--num_conv_layers",
    default=2,
    type=int,
    help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
    "--num_rnn_layers",
    default=3,
    type=int,
    help="RNN layer number. (default: %(default)s)")
parser.add_argument(
    "--rnn_layer_size",
    default=512,
    type=int,
    help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
    "--use_gpu",
    default=True,
    type=distutils.util.strtobool,
    help="Use gpu or not. (default: %(default)s)")
Y
Yibing Liu 已提交
41 42 43 44 45
parser.add_argument(
    "--mean_std_filepath",
    default='mean_std.npz',
    type=str,
    help="Manifest path for normalizer. (default: %(default)s)")
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
parser.add_argument(
    "--normalizer_manifest_path",
    default='data/manifest.libri.train-clean-100',
    type=str,
    help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
    "--decode_manifest_path",
    default='data/manifest.libri.test-100sample',
    type=str,
    help="Manifest path for decoding. (default: %(default)s)")
parser.add_argument(
    "--model_filepath",
    default='./params.tar.gz',
    type=str,
    help="Model filepath. (default: %(default)s)")
parser.add_argument(
    "--vocab_filepath",
Y
Yibing Liu 已提交
63
    default='datasets/vocab/eng_vocab.txt',
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    type=str,
    help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
    "--decode_method",
    default='beam_search_nproc',
    type=str,
    help="Method for decoding, beam_search or beam_search_nproc. (default: %(default)s)"
)
parser.add_argument(
    "--beam_size",
    default=500,
    type=int,
    help="Width for beam search decoding. (default: %(default)d)")
parser.add_argument(
    "--num_results_per_sample",
    default=1,
    type=int,
    help="Number of outputs per sample in beam search. (default: %(default)d)")
parser.add_argument(
    "--language_model_path",
Y
Yibing Liu 已提交
84
    default="data/1Billion.klm",
85 86 87 88
    type=str,
    help="Path for language model. (default: %(default)s)")
parser.add_argument(
    "--alpha_from",
89
    default=0.1,
90
    type=float,
91
    help="Where alpha starts from. (default: %(default)f)")
92
parser.add_argument(
93 94 95 96
    "--num_alphas",
    default=14,
    type=int,
    help="Number of candidate alphas. (default: %(default)d)")
97 98
parser.add_argument(
    "--alpha_to",
99
    default=0.36,
100
    type=float,
101
    help="Where alpha ends with. (default: %(default)f)")
102 103
parser.add_argument(
    "--beta_from",
104
    default=0.05,
105
    type=float,
106
    help="Where beta starts from. (default: %(default)f)")
107
parser.add_argument(
108 109
    "--num_betas",
    default=20,
110
    type=float,
111
    help="Number of candidate betas. (default: %(default)d)")
112 113
parser.add_argument(
    "--beta_to",
114
    default=1.0,
115
    type=float,
116 117 118 119 120 121 122
    help="Where beta ends with. (default: %(default)f)")
parser.add_argument(
    "--cutoff_prob",
    default=0.99,
    type=float,
    help="The cutoff probability of pruning"
    "in beam search. (default: %(default)f)")
123 124 125 126
args = parser.parse_args()


def tune():
Y
Yibing Liu 已提交
127
    """Tune parameters alpha and beta on one minibatch."""
128

129 130
    if not args.num_alphas >= 0:
        raise ValueError("num_alphas must be non-negative!")
131

132 133
    if not args.num_betas >= 0:
        raise ValueError("num_betas must be non-negative!")
134 135 136 137

    # initialize data generator
    data_generator = DataGenerator(
        vocab_filepath=args.vocab_filepath,
Y
Yibing Liu 已提交
138 139
        mean_std_filepath=args.mean_std_filepath,
        augmentation_config='{}')
140 141

    # create network config
Y
Yibing Liu 已提交
142 143 144
    # paddle.data_type.dense_array is used for variable batch input.
    # The size 161 * 161 is only an placeholder value and the real shape
    # of input batch data will be induced during training.
145
    audio_data = paddle.layer.data(
Y
Yibing Liu 已提交
146
        name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
147 148
    text_data = paddle.layer.data(
        name="transcript_text",
Y
Yibing Liu 已提交
149
        type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
150 151 152
    output_probs = deep_speech2(
        audio_data=audio_data,
        text_data=text_data,
Y
Yibing Liu 已提交
153
        dict_size=data_generator.vocab_size,
154 155 156 157 158 159 160 161 162 163
        num_conv_layers=args.num_conv_layers,
        num_rnn_layers=args.num_rnn_layers,
        rnn_size=args.rnn_layer_size,
        is_inference=True)

    # load parameters
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open(args.model_filepath))

    # prepare infer data
Y
Yibing Liu 已提交
164
    batch_reader = data_generator.batch_reader_creator(
165 166
        manifest_path=args.decode_manifest_path,
        batch_size=args.num_samples,
Y
Yibing Liu 已提交
167 168
        sortagrad=False,
        shuffle_method=None)
169
    # get one batch data for tuning
Y
Yibing Liu 已提交
170
    infer_data = batch_reader().next()
171 172 173 174

    # run inference
    infer_results = paddle.infer(
        output_layer=output_probs, parameters=parameters, input=infer_data)
Y
Yibing Liu 已提交
175
    num_steps = len(infer_results) // len(infer_data)
176 177 178 179 180
    probs_split = [
        infer_results[i * num_steps:(i + 1) * num_steps]
        for i in xrange(0, len(infer_data))
    ]

181 182 183 184 185 186
    # create grid for search
    cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
    cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas)
    params_grid = [(alpha, beta) for alpha in cand_alphas
                   for beta in cand_betas]

187 188 189 190 191 192 193
    ## tune parameters in loop
    for (alpha, beta) in params_grid:
        wer_sum, wer_counter = 0, 0
        ext_scorer = Scorer(alpha, beta, args.language_model_path)
        # beam search decode
        if args.decode_method == "beam_search":
            for i, probs in enumerate(probs_split):
Y
Yibing Liu 已提交
194 195 196 197
                target_transcription = ''.join([
                    data_generator.vocab_list[index]
                    for index in infer_data[i][1]
                ])
198 199
                beam_search_result = ctc_beam_search_decoder(
                    probs_seq=probs,
Y
Yibing Liu 已提交
200
                    vocabulary=data_generator.vocab_list,
201
                    beam_size=args.beam_size,
Y
Yibing Liu 已提交
202
                    blank_id=len(data_generator.vocab_list),
203 204
                    cutoff_prob=args.cutoff_prob,
                    ext_scoring_func=ext_scorer, )
205 206 207 208 209 210
                wer_sum += wer(target_transcription, beam_search_result[0][1])
                wer_counter += 1
        # beam search using multiple processes
        elif args.decode_method == "beam_search_nproc":
            beam_search_nproc_results = ctc_beam_search_decoder_nproc(
                probs_split=probs_split,
Y
Yibing Liu 已提交
211
                vocabulary=data_generator.vocab_list,
212
                beam_size=args.beam_size,
213
                cutoff_prob=args.cutoff_prob,
Y
Yibing Liu 已提交
214
                blank_id=len(data_generator.vocab_list),
215
                ext_scoring_func=ext_scorer, )
216
            for i, beam_search_result in enumerate(beam_search_nproc_results):
Y
Yibing Liu 已提交
217 218 219 220
                target_transcription = ''.join([
                    data_generator.vocab_list[index]
                    for index in infer_data[i][1]
                ])
221 222 223
                wer_sum += wer(target_transcription, beam_search_result[0][1])
                wer_counter += 1
        else:
Y
Yibing Liu 已提交
224 225
            raise ValueError("Decoding method [%s] is not supported." %
                             decode_method)
226 227 228 229 230 231 232 233 234 235 236 237

        print("alpha = %f\tbeta = %f\tWER = %f" %
              (alpha, beta, wer_sum / wer_counter))


def main():
    paddle.init(use_gpu=args.use_gpu, trainer_count=1)
    tune()


if __name__ == '__main__':
    main()