squad.py 19.3 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
"""Official evaluation script for SQuAD version 2.0.

In addition to basic functionality, we also compute additional statistics and
plot precision-recall curves if an additional na_prob.json file is provided.
This file is expected to map question ID's to the model's predicted probability
that a question is unanswerable.
"""
import collections
import re
import string
import json
import numpy as np
import os
import math


17 18 19 20 21 22 23 24 25 26 27
def compute_predictions(all_examples,
                        all_features,
                        all_results,
                        n_best_size,
                        max_answer_length,
                        do_lower_case,
                        version_2_with_negative,
                        null_score_diff_threshold,
                        verbose,
                        tokenizer,
                        is_whitespace_splited=True):
Z
Zeyu Chen 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    """Write final predictions to the json file and log-odds of null if needed."""

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction", [
            "feature_index", "start_index", "end_index", "start_logit",
            "end_logit"
        ])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    scores_diff_json = collections.OrderedDict()

    print(len(unique_id_to_result))
    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive
        min_null_feature_index = 0  # the paragraph slice with min mull score
        null_start_logit = 0  # the start logit at the slice with min null score
        null_end_logit = 0  # the end logit at the slice with min null score
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
            # if we could have irrelevant answers, get the min score of irrelevant
            if version_2_with_negative:
                feature_null_score = result.start_logits[0] + result.end_logits[
                    0]
                if feature_null_score < score_null:
                    score_null = feature_null_score
                    min_null_feature_index = feature_index
                    null_start_logit = result.start_logits[0]
                    null_end_logit = result.end_logits[0]
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))

        if version_2_with_negative:
            prelim_predictions.append(
                _PrelimPrediction(
                    feature_index=min_null_feature_index,
                    start_index=0,
                    end_index=0,
                    start_logit=null_start_logit,
                    end_logit=null_end_logit))
        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1
                                                              )]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end +
                                                                 1)]
                tok_text = " ".join(tok_tokens)

                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = " ".join(orig_tokens)
                final_text = get_final_text(tok_text, orig_text, tokenizer,
                                            verbose)
140 141
                if not is_whitespace_splited:
                    final_text = final_text.replace(' ', '')
Z
Zeyu Chen 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                if final_text in seen_predictions:
                    continue

                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))

        # if we didn't inlude the empty option in the n-best, inlcude it
        if version_2_with_negative:
            if "" not in seen_predictions:
                nbest.append(
                    _NbestPrediction(
                        text="",
                        start_logit=null_start_logit,
                        end_logit=null_end_logit))
        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(
                    text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
            if not best_non_null_entry:
                if entry.text:
                    best_non_null_entry = entry
                else:
                    best_non_null_entry = _NbestPrediction(
                        text="empty", start_logit=0.0, end_logit=0.0)

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1
        if not version_2_with_negative:
            all_predictions[example.qas_id] = nbest_json[0]["text"]
        else:

            # predict "" iff the null score - the score of best non-null > threshold
            score_diff = score_null - best_non_null_entry.start_logit - (
                best_non_null_entry.end_logit)
            scores_diff_json[example.qas_id] = score_diff
            if score_diff > null_score_diff_threshold:
                all_predictions[example.qas_id] = ""
            else:
                all_predictions[example.qas_id] = best_non_null_entry.text

        all_nbest_json[example.qas_id] = nbest_json

    return all_predictions, all_nbest_json, scores_diff_json


def get_final_text(pred_text, orig_text, tokenizer, verbose):
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
    tok_text = " ".join(tokenizer.basic_tokenizer.tokenize(orig_text))
    start_position = tok_text.find(pred_text)
    if start_position == -1:
        if verbose:
            print(u"Unable to find text: '%s' in '%s'" % (pred_text, tok_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
        if verbose:
            print(u"Length not equal after stripping spaces: '%s' vs '%s'" %
                  (orig_ns_text, tok_ns_text))
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for i, tok_index in tok_ns_to_s_map.items():
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
        if verbose:
            print(u"Couldn't map start position")
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
        if verbose:
            print(u"Couldn't map end position")
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text


def _compute_softmax(scores):
    """Compute softmax probability over raw logits."""
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs


def _get_best_indexes(logits, n_best_size):
    """Get the n-best logits from a list."""
    index_and_score = sorted(
        enumerate(logits), key=lambda x: x[1], reverse=True)

    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes


def make_qid_to_has_ans(examples):
    qid_to_has_ans = {}
    for example in examples:
        qid_to_has_ans[example.qas_id] = not example.is_impossible
    return qid_to_has_ans


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
        return re.sub(regex, ' ', text)

    def white_space_fix(text):
        return ' '.join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return ''.join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

366 367 368 369
    if not s:
        return []
    else:
        return white_space_fix(remove_articles(remove_punc(lower(s))))
Z
Zeyu Chen 已提交
370 371 372 373 374 375


def compute_exact(a_gold, a_pred):
    return int(normalize_answer(a_gold) == normalize_answer(a_pred))


376 377 378 379 380
def compute_f1(a_gold, a_pred, is_whitespace_splited=True):
    gold_toks = normalize_answer(a_gold).split()
    pred_toks = normalize_answer(a_pred).split()

    if not is_whitespace_splited:
381 382
        gold_toks = gold_toks[0] if gold_toks else ""
        pred_toks = pred_toks[0] if pred_toks else ""
383

Z
Zeyu Chen 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396
    common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
    num_same = sum(common.values())
    if len(gold_toks) == 0 or len(pred_toks) == 0:
        # If either is no-answer, then F1 is 1 if they agree, 0 otherwise
        return int(gold_toks == pred_toks)
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(pred_toks)
    recall = 1.0 * num_same / len(gold_toks)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


397
def get_raw_scores(examples, preds, is_whitespace_splited=True):
Z
Zeyu Chen 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411
    exact_scores = {}
    f1_scores = {}
    for example in examples:
        qid = example.qas_id
        gold_answers = [
            text for text in example.orig_answer_text if normalize_answer(text)
        ]
        if not gold_answers:
            # For unanswerable questions, only correct answer is empty string
            gold_answers = ['']
        if qid not in preds:
            print('Missing prediction for %s' % qid)
            continue
        a_pred = preds[qid]
412

Z
Zeyu Chen 已提交
413 414
        # Take max over all gold answers
        exact_scores[qid] = max(compute_exact(a, a_pred) for a in gold_answers)
415 416 417
        f1_scores[qid] = max(
            compute_f1(a, a_pred, is_whitespace_splited) for a in gold_answers)

Z
Zeyu Chen 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    return exact_scores, f1_scores


def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
    new_scores = {}
    for qid, s in scores.items():
        pred_na = na_probs[qid] > na_prob_thresh
        if pred_na:
            new_scores[qid] = float(not qid_to_has_ans[qid])
        else:
            new_scores[qid] = s
    return new_scores


def make_eval_dict(exact_scores, f1_scores, qid_list=None):
    if not qid_list:
        total = len(exact_scores)
        return collections.OrderedDict([
            ('exact', 100.0 * sum(exact_scores.values()) / total),
            ('f1', 100.0 * sum(f1_scores.values()) / total),
            ('total', total),
        ])
    else:
        total = len(qid_list)
        return collections.OrderedDict([
            ('exact', 100.0 * sum(exact_scores[k] for k in qid_list) / total),
            ('f1', 100.0 * sum(f1_scores[k] for k in qid_list) / total),
            ('total', total),
        ])


def merge_eval(main_eval, new_eval, prefix):
    for k in new_eval:
        main_eval['%s_%s' % (prefix, k)] = new_eval[k]


def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
    num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
    cur_score = num_no_ans
    best_score = cur_score
    best_thresh = 0.0
    qid_list = sorted(na_probs, key=lambda k: na_probs[k])
    for i, qid in enumerate(qid_list):
        if qid not in scores: continue
        if qid_to_has_ans[qid]:
            diff = scores[qid]
        else:
            if preds[qid]:
                diff = -1
            else:
                diff = 0
        cur_score += diff
        if cur_score > best_score:
            best_score = cur_score
            best_thresh = na_probs[qid]
    return 100.0 * best_score / len(scores), best_thresh


def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs,
                         qid_to_has_ans):
    best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs,
                                                qid_to_has_ans)
    best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs,
                                          qid_to_has_ans)
    main_eval['best_exact'] = best_exact
    main_eval['best_exact_thresh'] = exact_thresh
    main_eval['best_f1'] = best_f1
    main_eval['best_f1_thresh'] = f1_thresh


488 489 490 491 492
def squad_evaluate(examples,
                   preds,
                   na_probs=None,
                   na_prob_thresh=1.0,
                   is_whitespace_splited=True):
Z
Zeyu Chen 已提交
493 494 495 496 497 498
    if not na_probs:
        na_probs = {k: 0.0 for k in preds}

    qid_to_has_ans = make_qid_to_has_ans(examples)  # maps qid to True/False
    has_ans_qids = [k for k, v in qid_to_has_ans.items() if v]
    no_ans_qids = [k for k, v in qid_to_has_ans.items() if not v]
499
    exact_raw, f1_raw = get_raw_scores(examples, preds, is_whitespace_splited)
Z
Zeyu Chen 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    exact_thresh = apply_no_ans_threshold(exact_raw, na_probs, qid_to_has_ans,
                                          na_prob_thresh)
    f1_thresh = apply_no_ans_threshold(f1_raw, na_probs, qid_to_has_ans,
                                       na_prob_thresh)
    out_eval = make_eval_dict(exact_thresh, f1_thresh)
    if has_ans_qids:
        has_ans_eval = make_eval_dict(
            exact_thresh, f1_thresh, qid_list=has_ans_qids)
        merge_eval(out_eval, has_ans_eval, 'HasAns')
    if no_ans_qids:
        no_ans_eval = make_eval_dict(
            exact_thresh, f1_thresh, qid_list=no_ans_qids)
        merge_eval(out_eval, no_ans_eval, 'NoAns')
        find_all_best_thresh(out_eval, preds, exact_raw, f1_raw, na_probs,
                             qid_to_has_ans)

    print(json.dumps(out_eval, indent=2))