nmt_fluid.py 13.1 KB
Newer Older
G
init  
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10
import os
import numpy as np
import time
import argparse

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core

from model import transformer, position_encoding_init
G
cleanup  
gongweibao 已提交
11
import model
G
init  
gongweibao 已提交
12 13 14
from optim import LearningRateScheduler
from config import TrainTaskConfig, ModelHyperParams, pos_enc_param_names, \
        encoder_input_data_names, decoder_input_data_names, label_data_names
G
fix bug  
gongweibao 已提交
15
import paddle.fluid.debuger as debuger
G
init  
gongweibao 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=TrainTaskConfig.batch_size, help="Batch size for training.")

parser.add_argument(
    '--learning_rate',
    type=float,
    default=TrainTaskConfig.learning_rate,
    help="Learning rate for training.")

parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")

parser.add_argument(
    '--device',
    type=str,
    default='CPU',
    choices=['CPU', 'GPU'],
    help="The device type.")

parser.add_argument('--device_id', type=int, default=0, help="The device id.")

parser.add_argument(
    '--local',
    type=str2bool,
    default=True,
    help='Whether to run as local mode.')

parser.add_argument(
    "--ps_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")

parser.add_argument(
    "--trainer_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")

parser.add_argument(
    "--pass_num",
    type=int,
    default=TrainTaskConfig.pass_num,
    help="pass num of train")

# Flags for defining the tf.train.Server
parser.add_argument(
    "--task_index", type=int, default=0, help="Index of task within the job")
args = parser.parse_args()

G
cleanup  
gongweibao 已提交
75 76
model.batch_size = args.batch_size

G
init  
gongweibao 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   return_pos=True,
                   return_attn_bias=True,
                   return_max_len=True):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if return_pos:
        inst_pos = np.array([[
            pos_i + 1 if w_i != pad_idx else 0 for pos_i, w_i in enumerate(inst)
        ] for inst in inst_data])

        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
            slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                [-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
                        max_length, n_head):
    """
    Put all padded data needed by training into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
G
merge  
gongweibao 已提交
133 134 135 136 137 138 139 140 141 142 143 144
    src_slf_attn_pre_softmax_shape = np.array(
        [-1, src_slf_attn_bias.shape[-1]], dtype="int32")
    src_slf_attn_post_softmax_shape = np.array(
        src_slf_attn_bias.shape, dtype="int32")
    trg_slf_attn_pre_softmax_shape = np.array(
        [-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
    trg_slf_attn_post_softmax_shape = np.array(
        trg_slf_attn_bias.shape, dtype="int32")
    trg_src_attn_pre_softmax_shape = np.array(
        [-1, trg_src_attn_bias.shape[-1]], dtype="int32")
    trg_src_attn_post_softmax_shape = np.array(
        trg_src_attn_bias.shape, dtype="int32")
G
init  
gongweibao 已提交
145 146 147 148 149
    lbl_word = pad_batch_data([inst[2] for inst in insts], trg_pad_idx, n_head,
                              False, False, False, False)
    lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
    input_dict = dict(
        zip(input_data_names, [
G
merge  
gongweibao 已提交
150 151 152 153 154 155
            src_word, src_pos, src_slf_attn_bias,
            src_slf_attn_pre_softmax_shape, src_slf_attn_post_softmax_shape,
            trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias,
            trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape,
            trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape,
            lbl_word, lbl_weight
G
init  
gongweibao 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        ]))
    return input_dict


def main():
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(
        args.device_id)
    exe = fluid.Executor(place)

    cost, predict = transformer(
        ModelHyperParams.src_vocab_size + 1,
        ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer, ModelHyperParams.n_head,
        ModelHyperParams.d_key, ModelHyperParams.d_value,
        ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
        ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)

    lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
                                         TrainTaskConfig.warmup_steps, place,
                                         TrainTaskConfig.learning_rate)
    optimizer = fluid.optimizer.Adam(
G
fix bug  
gongweibao 已提交
178 179
        #learning_rate=lr_scheduler.learning_rate,
        learning_rate=TrainTaskConfig.learning_rate,
G
init  
gongweibao 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        beta1=TrainTaskConfig.beta1,
        beta2=TrainTaskConfig.beta2,
        epsilon=TrainTaskConfig.eps)

    #optimizer.minimize(cost)
    optimize_ops, params_grads = optimizer.minimize(cost)

    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        inference_program = fluid.io.get_inference_program([cost])

    def test(exe):
        test_costs = []
        for batch_id, data in enumerate(test_reader()):
            if len(data) != args.batch_size:
                continue

            data_input = prepare_batch_input(
                data, encoder_input_data_names + decoder_input_data_names[:-1] +
                label_data_names, ModelHyperParams.src_pad_idx,
                ModelHyperParams.trg_pad_idx, ModelHyperParams.max_length,
                ModelHyperParams.n_head)

G
cleanup  
gongweibao 已提交
203
            test_cost = exe.run(inference_program,
G
init  
gongweibao 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
                                feed=data_input,
                                fetch_list=[cost])[0]

            test_costs.append(test_cost)
        return np.mean(test_costs)

    def train_loop(exe, trainer_prog):
        ts = time.time()
        for pass_id in xrange(args.pass_num):
            for batch_id, data in enumerate(train_reader()):
                # The current program desc is coupled with batch_size, thus all
                # mini-batches must have the same number of instances currently.
                if len(data) != args.batch_size:
                    continue

                start_time = time.time()
                data_input = prepare_batch_input(
                    data, encoder_input_data_names + decoder_input_data_names[:-1] +
                    label_data_names, ModelHyperParams.src_pad_idx,
                    ModelHyperParams.trg_pad_idx, ModelHyperParams.max_length,
                    ModelHyperParams.n_head)


G
fix bug  
gongweibao 已提交
227 228 229 230 231
                lr_scheduler.update_learning_rate(data_input)
                outs = exe.run(trainer_prog,
                           feed=data_input,
                           fetch_list=[cost],
                           use_program_cache=True)
G
init  
gongweibao 已提交
232 233 234 235 236 237 238

                cost_val = np.array(outs[0])
                print("pass_id = %d batch = %d  cost = %f speed = %.2f sample/s" %
                      (pass_id, batch_id, cost_val, len(data) / (time.time() - start_time)))

            # Validate and save the model for inference.
            val_cost = test(exe)
G
cleanup  
gongweibao 已提交
239
            print("pass_id = %d cost = %f avg_speed = %.2f sample/s" %
G
init  
gongweibao 已提交
240 241 242 243 244
                  (pass_id, batch_id, cost_val, len(data) / (time.time() - ts)))

    if args.local:
        # Initialize the parameters.
        exe.run(fluid.framework.default_startup_program())
G
fix bug  
gongweibao 已提交
245 246
        #print("local start_up:")
        #print(debuger.pprint_program_codes(fluid.framework.default_startup_program()))
G
init  
gongweibao 已提交
247
        for pos_enc_param_name in pos_enc_param_names:
G
fix bug  
gongweibao 已提交
248
            #print("pos_enc_param_name:", pos_enc_param_name)
G
init  
gongweibao 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            pos_enc_param = fluid.global_scope().find_var(
                pos_enc_param_name).get_tensor()
            pos_enc_param.set(
                position_encoding_init(ModelHyperParams.max_length + 1,
                                       ModelHyperParams.d_model), place)

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.wmt16.train(ModelHyperParams.src_vocab_size,
                                           ModelHyperParams.trg_vocab_size),
                buf_size=100000),
            batch_size=args.batch_size)

        test_reader = paddle.batch(
            paddle.dataset.wmt16.validation(ModelHyperParams.src_vocab_size,
                                            ModelHyperParams.trg_vocab_size),
            batch_size=args.batch_size)

        train_loop(exe, fluid.default_main_program())
    else:
        trainers = int(os.getenv("TRAINERS"))  # total trainer count
        print("trainers total: ", trainers)

        training_role = os.getenv(
            "TRAINING_ROLE",
            "TRAINER")  # get the training role: trainer/pserver

        t = fluid.DistributeTranspiler()
        t.transpile(
            optimize_ops,
            params_grads,
            trainer_id=args.task_index,
            pservers=args.ps_hosts,
            trainers=trainers)

        if training_role == "PSERVER":
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_INIT_PORT")
            if not current_endpoint:
                print("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            # Parameter initialization
            exe.run(fluid.default_startup_program())

G
fix bug  
gongweibao 已提交
299 300 301 302 303 304 305 306 307 308 309
            #print("cluster start_up:")
            #print(debuger.pprint_program_codes(fluid.framework.default_startup_program()))

            for pos_enc_param_name in pos_enc_param_names:
                #print("pos_enc_param_name:", pos_enc_param_name)
                pos_enc_param = fluid.global_scope().find_var(
                    pos_enc_param_name).get_tensor()
                pos_enc_param.set(
                    position_encoding_init(ModelHyperParams.max_length + 1,
                                           ModelHyperParams.d_model), place)

G
init  
gongweibao 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
            train_reader = paddle.batch(
                paddle.reader.shuffle(
                    paddle.dataset.wmt16.train(ModelHyperParams.src_vocab_size,
                                               ModelHyperParams.trg_vocab_size),
                    buf_size=100000),
                batch_size=args.batch_size)

            test_reader = paddle.batch(
                paddle.dataset.wmt16.validation(ModelHyperParams.src_vocab_size,
                                                ModelHyperParams.trg_vocab_size),
                batch_size=args.batch_size)

            trainer_prog = t.get_trainer_program()
            train_loop(exe, trainer_prog)
        else:
            print("environment var TRAINER_ROLE should be TRAINER os PSERVER")

def print_arguments():
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')

if __name__ == "__main__":
G
merge  
gongweibao 已提交
334
    print_arguments()
G
init  
gongweibao 已提交
335
    main()