model.py 22.8 KB
Newer Older
1 2
from functools import partial
import numpy as np
Y
ying 已提交
3

L
Luo Tao 已提交
4 5
import paddle.fluid as fluid
import paddle.fluid.layers as layers
Y
ying 已提交
6

7 8
from config import TrainTaskConfig, pos_enc_param_names, \
    encoder_input_data_names, decoder_input_data_names, label_data_names
Y
ying 已提交
9 10 11

# FIXME(guosheng): Remove out the batch_size from the model.
batch_size = TrainTaskConfig.batch_size
12 13

def position_encoding_init(n_position, d_pos_vec):
Y
ying 已提交
14
    """
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
    Generate the initial values for the sinusoid position encoding table.
    """
    position_enc = np.array([[
        pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
        for j in range(d_pos_vec)
    ] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return position_enc.astype("float32")


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
G
guosheng 已提交
33
                         n_head=1,
G
guosheng 已提交
34 35 36
                         dropout_rate=0.,
                         pre_softmax_shape=None,
                         post_softmax_shape=None):
37
    """
Y
ying 已提交
38 39 40
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
41 42 43
    """
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
Y
ying 已提交
44
            "Inputs: quries, keys and values should all be 3-D tensors.")
45

G
guosheng 已提交
46
    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
Y
ying 已提交
47
        """
48 49 50
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
G
guosheng 已提交
51 52 53 54 55
                      size=d_key * n_head,
                      param_attr=fluid.initializer.Xavier(
                          uniform=False,
                          fan_in=d_model * d_key,
                          fan_out=n_head * d_key),
56 57 58
                      bias_attr=False,
                      num_flatten_dims=2)
        k = layers.fc(input=keys,
G
guosheng 已提交
59 60 61 62 63
                      size=d_key * n_head,
                      param_attr=fluid.initializer.Xavier(
                          uniform=False,
                          fan_in=d_model * d_key,
                          fan_out=n_head * d_key),
64 65 66
                      bias_attr=False,
                      num_flatten_dims=2)
        v = layers.fc(input=values,
G
guosheng 已提交
67 68 69 70 71
                      size=d_value * n_head,
                      param_attr=fluid.initializer.Xavier(
                          uniform=False,
                          fan_in=d_model * d_value,
                          fan_out=n_head * d_value),
72 73 74 75
                      bias_attr=False,
                      num_flatten_dims=2)
        return q, k, v

G
guosheng 已提交
76
    def __split_heads(x, n_head):
77 78 79
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions and then transpose. Specifically, input a tensor with shape
G
guosheng 已提交
80 81
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
82
        """
G
guosheng 已提交
83
        if n_head == 1:
84 85 86
            return x

        hidden_size = x.shape[-1]
Y
ying 已提交
87
        # FIXME(guosheng): Decouple the program desc with batch_size.
88
        reshaped = layers.reshape(
G
guosheng 已提交
89
            x=x, shape=[batch_size, -1, n_head, hidden_size // n_head])
90 91

        # permuate the dimensions into:
G
guosheng 已提交
92
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
93 94 95 96 97 98 99 100 101 102 103 104
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) == 3: return x
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
Y
ying 已提交
105
        # FIXME(guosheng): Decouple the program desc with batch_size.
106 107 108 109 110
        return layers.reshape(
            x=trans_x,
            shape=map(int,
                      [batch_size, -1, trans_x.shape[2] * trans_x.shape[3]]))

G
guosheng 已提交
111
    def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
112 113 114
        """
        Scaled Dot-Product Attention
        """
G
guosheng 已提交
115
        scaled_q = layers.scale(x=q, scale=d_model**-0.5)
116
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
G
guosheng 已提交
117 118 119 120 121 122 123 124
        weights = layers.reshape(
            x=layers.elementwise_add(
                x=product, y=attn_bias) if attn_bias else product,
            shape=[-1, product.shape[-1]],
            actual_shape=pre_softmax_shape,
            act="softmax")
        weights = layers.reshape(
            x=weights, shape=product.shape, actual_shape=post_softmax_shape)
125 126 127 128 129 130
        if dropout_rate:
            weights = layers.dropout(
                weights, dropout_prob=dropout_rate, is_test=False)
        out = layers.matmul(weights, v)
        return out

G
guosheng 已提交
131
    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
132

G
guosheng 已提交
133 134 135
    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)
136

G
guosheng 已提交
137
    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
138 139 140 141 142 143 144
                                                  dropout_rate)

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
G
guosheng 已提交
145
                         param_attr=fluid.initializer.Xavier(uniform=False),
146 147 148 149 150 151 152
                         bias_attr=False,
                         num_flatten_dims=2)
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid):
    """
Y
ying 已提交
153 154 155
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
156 157 158 159
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
G
guosheng 已提交
160 161
                       param_attr=fluid.initializer.Uniform(
                           low=-(d_hid**-0.5), high=(d_hid**-0.5)),
162
                       act="relu")
G
guosheng 已提交
163 164 165 166 167
    out = layers.fc(input=hidden,
                    size=d_hid,
                    num_flatten_dims=2,
                    param_attr=fluid.initializer.Uniform(
                        low=-(d_inner_hid**-0.5), high=(d_inner_hid**-0.5)))
168 169 170
    return out


171
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
172
    """
Y
ying 已提交
173
    Add residual connection, layer normalization and droput to the out tensor
174
    optionally according to the value of process_cmd.
Y
ying 已提交
175

176 177 178 179
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
Y
ying 已提交
180
        if cmd == "a":  # add residual connection
181
            out = out + prev_out if prev_out else out
Y
ying 已提交
182
        elif cmd == "n":  # add layer normalization
G
guosheng 已提交
183 184 185 186 187
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.),
                bias_attr=fluid.initializer.Constant(0.))
Y
ying 已提交
188
        elif cmd == "d":  # add dropout
189 190 191
            if dropout_rate:
                out = layers.dropout(
                    out, dropout_prob=dropout_rate, is_test=False)
192 193 194 195 196 197 198 199 200 201 202 203 204
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


def prepare_encoder(src_word,
                    src_pos,
                    src_vocab_size,
                    src_emb_dim,
                    src_pad_idx,
                    src_max_len,
205
                    dropout_rate=0.,
206 207
                    pos_pad_idx=0,
                    pos_enc_param_name=None):
Y
ying 已提交
208 209
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
210
    [batch_size, max_src_length_in_batch, d_model].
Y
ying 已提交
211 212

    This module is used at the bottom of the encoder stacks.
213 214
    """
    src_word_emb = layers.embedding(
G
guosheng 已提交
215 216 217 218
        src_word,
        size=[src_vocab_size, src_emb_dim],
        padding_idx=src_pad_idx,
        param_attr=fluid.initializer.Normal(0., 1.))
219 220 221
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
G
guosheng 已提交
222
        padding_idx=pos_pad_idx,
223 224 225
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name, trainable=False))
    enc_input = src_word_emb + src_pos_enc
Y
ying 已提交
226 227

    # FIXME(guosheng): Decouple the program desc with batch_size.
228 229
    enc_input = layers.reshape(x=enc_input, shape=[batch_size, -1, src_emb_dim])
    return layers.dropout(
230 231
        enc_input, dropout_prob=dropout_rate,
        is_test=False) if dropout_rate else enc_input
232 233 234 235 236 237 238 239


prepare_encoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[0])
prepare_decoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[1])


Y
ying 已提交
240 241 242 243 244 245 246
def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
G
guosheng 已提交
247 248 249
                  dropout_rate=0.,
                  pre_softmax_shape=None,
                  post_softmax_shape=None):
Y
ying 已提交
250 251 252 253 254 255
    """The encoder layers that can be stacked to form a deep encoder.

    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
256
    """
G
guosheng 已提交
257 258 259
    attn_output = multi_head_attention(
        enc_input, enc_input, enc_input, attn_bias, d_key, d_value, d_model,
        n_head, dropout_rate, pre_softmax_shape, post_softmax_shape)
Y
ying 已提交
260 261
    attn_output = post_process_layer(enc_input, attn_output, "dan",
                                     dropout_rate)
262
    ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
Y
ying 已提交
263 264 265 266 267 268 269 270 271 272 273
    return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
G
guosheng 已提交
274 275 276
            dropout_rate=0.,
            pre_softmax_shape=None,
            post_softmax_shape=None):
277
    """
Y
ying 已提交
278 279
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
280 281
    """
    for i in range(n_layer):
282 283 284 285 286 287 288 289
        enc_output = encoder_layer(
            enc_input,
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
G
guosheng 已提交
290 291 292
            dropout_rate,
            pre_softmax_shape,
            post_softmax_shape, )
293 294 295 296
        enc_input = enc_output
    return enc_output


Y
ying 已提交
297 298 299 300 301 302 303 304 305
def decoder_layer(dec_input,
                  enc_output,
                  slf_attn_bias,
                  dec_enc_attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
G
guosheng 已提交
306 307 308 309 310
                  dropout_rate=0.,
                  slf_attn_pre_softmax_shape=None,
                  slf_attn_post_softmax_shape=None,
                  src_attn_pre_softmax_shape=None,
                  src_attn_post_softmax_shape=None):
Y
ying 已提交
311 312 313 314
    """ The layer to be stacked in decoder part.

    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
315
    """
Y
ying 已提交
316 317 318 319 320 321 322 323 324
    slf_attn_output = multi_head_attention(
        dec_input,
        dec_input,
        dec_input,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
G
guosheng 已提交
325 326 327
        dropout_rate,
        slf_attn_pre_softmax_shape,
        slf_attn_post_softmax_shape, )
Y
ying 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
    enc_attn_output = multi_head_attention(
        slf_attn_output,
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
G
guosheng 已提交
342 343 344
        dropout_rate,
        src_attn_pre_softmax_shape,
        src_attn_post_softmax_shape, )
Y
ying 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
    ffd_output = positionwise_feed_forward(
        enc_attn_output,
        d_inner_hid,
        d_model, )
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        "dan",  # residual connection + dropout + layer normalization
        dropout_rate, )
359 360 361
    return dec_output


Y
ying 已提交
362 363 364 365 366 367 368 369 370 371
def decoder(dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
G
guosheng 已提交
372 373 374 375 376
            dropout_rate=0.,
            slf_attn_pre_softmax_shape=None,
            slf_attn_post_softmax_shape=None,
            src_attn_pre_softmax_shape=None,
            src_attn_post_softmax_shape=None):
377 378 379 380
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
Y
ying 已提交
381 382 383 384 385 386 387 388 389 390
        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
G
guosheng 已提交
391 392 393 394 395
            dropout_rate,
            slf_attn_pre_softmax_shape,
            slf_attn_post_softmax_shape,
            src_attn_pre_softmax_shape,
            src_attn_post_softmax_shape, )
396 397 398 399
        dec_input = dec_output
    return dec_output


400 401 402 403 404
def make_inputs(input_data_names,
                n_head,
                d_model,
                batch_size,
                max_length,
405
                is_pos,
406 407
                slf_attn_bias_flag,
                src_attn_bias_flag,
G
guosheng 已提交
408 409 410
                enc_output_flag=False,
                slf_attn_shape_flag=True,
                src_attn_shape_flag=True):
411 412 413 414 415 416 417
    """
    Define the input data layers for the transformer model.
    """
    input_layers = []
    # The shapes here act as placeholder.
    # The shapes set here is to pass the infer-shape in compile time.
    word = layers.data(
418
        name=input_data_names[len(input_layers)],
419 420 421 422 423 424
        shape=[batch_size * max_length, 1],
        dtype="int64",
        append_batch_size=False)
    input_layers += [word]
    # This is used for position data or label weight.
    pos = layers.data(
425
        name=input_data_names[len(input_layers)],
426
        shape=[batch_size * max_length, 1],
427
        dtype="int64" if is_pos else "float32",
428 429 430
        append_batch_size=False)
    input_layers += [pos]
    if slf_attn_bias_flag:
431 432 433
        # This input is used to remove attention weights on paddings for the
        # encoder and to remove attention weights on subsequent words for the
        # decoder.
434
        slf_attn_bias = layers.data(
435 436
            name=input_data_names[len(input_layers)],
            shape=[batch_size, n_head, max_length, max_length],
437 438 439 440
            dtype="float32",
            append_batch_size=False)
        input_layers += [slf_attn_bias]
    if src_attn_bias_flag:
441
        # This input is used to remove attention weights on paddings.
442
        src_attn_bias = layers.data(
443
            name=input_data_names[len(input_layers)],
444 445 446 447
            shape=[batch_size, n_head, max_length, max_length],
            dtype="float32",
            append_batch_size=False)
        input_layers += [src_attn_bias]
G
guosheng 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    if slf_attn_shape_flag:
        slf_attn_pre_softmax_shape = layers.data(
            name=input_data_names[len(input_layers)],
            shape=[3],
            dtype="int32",
            append_batch_size=False)
        input_layers += [slf_attn_pre_softmax_shape]
        slf_attn_post_softmax_shape = layers.data(
            name=input_data_names[len(input_layers)],
            shape=[3],
            dtype="int32",
            append_batch_size=False)
        input_layers += [slf_attn_post_softmax_shape]
    if src_attn_shape_flag:
        src_attn_pre_softmax_shape = layers.data(
            name=input_data_names[len(input_layers)],
            shape=[3],
            dtype="int32",
            append_batch_size=False)
        input_layers += [src_attn_pre_softmax_shape]
        src_attn_post_softmax_shape = layers.data(
            name=input_data_names[len(input_layers)],
            shape=[3],
            dtype="int32",
            append_batch_size=False)
        input_layers += [src_attn_post_softmax_shape]
474 475 476 477 478 479 480
    if enc_output_flag:
        enc_output = layers.data(
            name=input_data_names[len(input_layers)],
            shape=[batch_size, max_length, d_model],
            dtype="float32",
            append_batch_size=False)
        input_layers += [enc_output]
G
guosheng 已提交
481

482 483 484
    return input_layers


Y
ying 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498
def transformer(
        src_vocab_size,
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        src_pad_idx,
        trg_pad_idx,
        pos_pad_idx, ):
G
guosheng 已提交
499 500 501 502 503 504 505 506 507 508 509 510
    enc_input_layers = make_inputs(
        encoder_input_data_names,
        n_head,
        d_model,
        batch_size,
        max_length,
        is_pos=True,
        slf_attn_bias_flag=True,
        src_attn_bias_flag=False,
        enc_output_flag=False,
        slf_attn_shape_flag=True,
        src_attn_shape_flag=False)
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525
    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        src_pad_idx,
        pos_pad_idx,
        enc_input_layers, )

G
guosheng 已提交
526 527 528 529 530 531 532 533 534 535 536 537
    dec_input_layers = make_inputs(
        decoder_input_data_names,
        n_head,
        d_model,
        batch_size,
        max_length,
        is_pos=True,
        slf_attn_bias_flag=True,
        src_attn_bias_flag=True,
        enc_output_flag=False,
        slf_attn_shape_flag=True,
        src_attn_shape_flag=True)
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        trg_pad_idx,
        pos_pad_idx,
        dec_input_layers,
        enc_output, )

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
G
guosheng 已提交
556 557 558 559 560 561 562 563 564 565 566 567
    gold, weights = make_inputs(
        label_data_names,
        n_head,
        d_model,
        batch_size,
        max_length,
        is_pos=False,
        slf_attn_bias_flag=False,
        src_attn_bias_flag=False,
        enc_output_flag=False,
        slf_attn_shape_flag=False,
        src_attn_shape_flag=False)
568
    cost = layers.softmax_with_cross_entropy(logits=predict, label=gold)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    weighted_cost = cost * weights
    return layers.reduce_sum(weighted_cost), predict


def wrap_encoder(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 dropout_rate,
                 src_pad_idx,
                 pos_pad_idx,
                 enc_input_layers=None):
    """
    The wrapper assembles together all needed layers for the encoder.
    """
    if enc_input_layers is None:
        # This is used to implement independent encoder program in inference.
G
guosheng 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602
        src_word, src_pos, src_slf_attn_bias, slf_attn_pre_softmax_shape, \
            slf_attn_post_softmax_shape = make_inputs(
                encoder_input_data_names,
                n_head,
                d_model,
                batch_size,
                max_length,
                is_pos=True,
                slf_attn_bias_flag=True,
                src_attn_bias_flag=False,
                enc_output_flag=False,
                slf_attn_shape_flag=True,
                src_attn_shape_flag=False)
603
    else:
G
guosheng 已提交
604 605
        src_word, src_pos, src_slf_attn_bias, slf_attn_pre_softmax_shape, \
            slf_attn_post_softmax_shape = enc_input_layers
Y
ying 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        src_pad_idx,
        max_length,
        dropout_rate, )
    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
G
guosheng 已提交
623 624 625
        dropout_rate,
        slf_attn_pre_softmax_shape,
        slf_attn_post_softmax_shape, )
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    return enc_output


def wrap_decoder(trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
                 dropout_rate,
                 trg_pad_idx,
                 pos_pad_idx,
                 dec_input_layers=None,
                 enc_output=None):
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_input_layers is None:
        # This is used to implement independent decoder program in inference.
G
guosheng 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
            slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape, \
            src_attn_pre_softmax_shape, src_attn_post_softmax_shape, \
            enc_output = make_inputs(
                decoder_input_data_names,
                n_head,
                d_model,
                batch_size,
                max_length,
                is_pos=True,
                slf_attn_bias_flag=True,
                src_attn_bias_flag=True,
                enc_output_flag=True,
                slf_attn_shape_flag=True,
                src_attn_shape_flag=True)
662
    else:
G
guosheng 已提交
663 664 665 666
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
            slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape, \
            src_attn_pre_softmax_shape, src_attn_post_softmax_shape = \
                dec_input_layers
Y
ying 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686

    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        trg_pad_idx,
        max_length,
        dropout_rate, )
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
G
guosheng 已提交
687 688 689 690 691
        dropout_rate,
        slf_attn_pre_softmax_shape,
        slf_attn_post_softmax_shape,
        src_attn_pre_softmax_shape,
        src_attn_post_softmax_shape, )
692
    # Return logits for training and probs for inference.
693 694 695 696 697 698
    predict = layers.reshape(
        x=layers.fc(input=dec_output,
                    size=trg_vocab_size,
                    bias_attr=False,
                    num_flatten_dims=2),
        shape=[-1, trg_vocab_size],
699
        act="softmax" if dec_input_layers is None else None)
700
    return predict