introduction_en.ipynb 7.8 KB
Notebook
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Introduction\n",
    "P-YOLOE is an excellent single-stage anchor-free model based on PP-YOLOv2, surpassing a variety of popular YOLO models. PP-YOLOE has a series of models, named s/m/l/x, which are configured through width multiplier and depth multiplier. PP-YOLOE avoids using special operators, such as Deformable Convolution or Matrix NMS, to be deployed friendly on various hardware. For more details, please refer to [official documentation](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ppyoloe/README.md)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Model Effects\n",
    "PP-YOLOE-l achieves 51.6 mAP on COCO test-dev2017 dataset with 78.1 FPS on Tesla V100. While using TensorRT FP16, PP-YOLOE-l can be further accelerated to 149.2 FPS. PP-YOLOE-s/m/x also have excellent accuracy and speed performance as shown below.\n",
    "\n",
    "<div align=\"center\">\n",
    "  <img src=\"https://paddledet.bj.bcebos.com/modelcenter/images/ppyoloe_map_fps.png\" width=500 />\n",
    "</div>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 3. How to use the model\n",
    "Clone PaddleDetection firstly and put the COCO-style dataset in `dataset/coco`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
34
   "metadata": {},
W
wangxinxin08 已提交
35 36
   "outputs": [],
   "source": [
37 38 39 40
    "%mkdir -p ~/work\n",
    "%cd ~/work/\n",
    "!git clone https://github.com/PaddlePaddle/PaddleDetection.git\n",
    "\n",
41
    "%cd PaddleDetection\n",
42
    "%mkdir -p demo_input demo_output\n",
43
    "!pip install -r requirements.txt"
W
wangxinxin08 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.1 Training\n",
    "Training PP-YOLOE with mixed precision on 8 GPUs with following command"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
57
   "metadata": {},
W
wangxinxin08 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
   "outputs": [],
   "source": [
    "# training with single GPU\n",
    "!python tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --eval --amp\n",
    "\n",
    "# training with mutiple GPUs\n",
    "!python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --eval --amp"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Notes:**\n",
    "- If you need to evaluate while training, please add `--eval`.\n",
    "- PP-YOLOE supports mixed precision training, please add `--amp`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 3.2 Inference\n",
    "#### 3.2.1 Inference with Paddle-TRT\n",
    "Next, we will introduce how to use Paddle Inference to deploy PP-YOLOE models in TensorRT FP16 mode.\n",
    "\n",
    "First, refer to [Paddle Inference Docs](https://www.paddlepaddle.org.cn/inference/master/user_guides/download_lib.html#python), download and install packages corresponding to CUDA, CUDNN and TensorRT version.\n",
    "\n",
    "Then, Exporting PP-YOLOE for Paddle Inference **with TensorRT**, use following command."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
92
   "metadata": {},
W
wangxinxin08 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
   "outputs": [],
   "source": [
    "!python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams trt=True"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, inference in TensorRT FP16 mode."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
108
   "metadata": {},
W
wangxinxin08 已提交
109 110 111
   "outputs": [],
   "source": [
    "# inference single image\n",
112 113
    "!wget -P demo_input -N https://paddledet.bj.bcebos.com/modelcenter/images/General/000000014439.jpg\n",
    "!CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_300e_coco --image_file=demo_input/000000014439.jpg --device=gpu --run_mode=trt_fp16 --output_dir=demo_output"
W
wangxinxin08 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**Notes:**\n",
    "- TensorRT will perform optimization for the current hardware platform according to the definition of the network, generate an inference engine and serialize it into a file. This inference engine is only applicable to the current hardware hardware platform. If your hardware and software platform has not changed, you can set `use_static=True` in [enable_tensorrt_engine](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/python/infer.py#L857). In this way, the serialized file generated will be saved in the `output_inference` folder, and the saved serialized file will be loaded the next time when TensorRT is executed.\n",
    "- PaddleDetection release/2.4 and later versions will support NMS calling TensorRT, which requires PaddlePaddle release/2.3 and later versions."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 3.2.2 Inference with PaddleInference\n",
    "For some AI acceleration hardware that does not support TensorRT, we can directly use PaddleInference to deploy. First run the following command to export the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
136
   "metadata": {},
W
wangxinxin08 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
   "outputs": [],
   "source": [
    "!python tools/export_model.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Inference with PaddleInference directly."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
152
   "metadata": {},
W
wangxinxin08 已提交
153 154 155
   "outputs": [],
   "source": [
    "# inference single image\n",
156
    "!CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_300e_coco --image_file=demo_input/000000014439.jpg --device=gpu --run_mode=paddle --output_dir=demo_output"
W
wangxinxin08 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. Model principle\n",
    "The overall archtecture of PP-YOLOE is shown as follows:\n",
    "<div align=\"center\">\n",
    "  <img src=\"https://paddledet.bj.bcebos.com/modelcenter/images/PP-YOLOE-Arch.png\" width=70% />\n",
    "</div>\n",
    "\n",
    "PP-YOLOE is composed of following methods:\n",
    "- Scalable backbone and neck\n",
    "- [Task Alignment Learning](https://arxiv.org/abs/2108.07755)\n",
    "- Efficient Task-aligned head with [DFL](https://arxiv.org/abs/2006.04388) and [VFL](https://arxiv.org/abs/2008.13367)\n",
    "- [SiLU(Swish) activation function](https://arxiv.org/abs/1710.05941)\n",
    "\n",
    "For more details, please refer to our technical report: https://arxiv.org/abs/2203.16250"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 5. Attention\n",
    "**All commands run on AI Studio's `jupyter` by default. If running on a terminal, remove the % or ! at the beginning of the command.**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 6. Related papers and citations\n",
    "```\n",
    "@article{xu2022pp,\n",
    "  title={PP-YOLOE: An evolved version of YOLO},\n",
    "  author={Xu, Shangliang and Wang, Xinxin and Lv, Wenyu and Chang, Qinyao and Cui, Cheng and Deng, Kaipeng and Wang, Guanzhong and Dang, Qingqing and Wei, Shengyu and Du, Yuning and others},\n",
    "  journal={arXiv preprint arXiv:2203.16250},\n",
    "  year={2022}\n",
    "}\n",
    "```"
   ]
  }
 ],
 "metadata": {
203 204 205 206
  "kernelspec": {
   "display_name": "Python 3.10.6 64-bit",
   "language": "python",
   "name": "python3"
W
wangxinxin08 已提交
207
  },
208 209 210 211 212 213 214 215 216 217
  "language_info": {
   "name": "python",
   "version": "3.10.6"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
   }
  }
W
wangxinxin08 已提交
218 219 220 221
 },
 "nbformat": 4,
 "nbformat_minor": 2
}