keypoint_preprocess.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
this code is based on https://github.com/open-mmlab/mmpose/mmpose/core/post_processing/post_transforms.py
"""
import cv2
import numpy as np


class EvalAffine(object):
    def __init__(self, size, stride=64):
        super(EvalAffine, self).__init__()
        self.size = size
        self.stride = stride

    def __call__(self, image, im_info):
        s = self.size
        h, w, _ = image.shape
        trans, size_resized = get_affine_mat_kernel(h, w, s, inv=False)
        image_resized = cv2.warpAffine(image, trans, size_resized)
        return image_resized, im_info


def get_affine_mat_kernel(h, w, s, inv=False):
    if w < h:
        w_ = s
        h_ = int(np.ceil((s / w * h) / 64.) * 64)
        scale_w = w
        scale_h = h_ / w_ * w

    else:
        h_ = s
        w_ = int(np.ceil((s / h * w) / 64.) * 64)
        scale_h = h
        scale_w = w_ / h_ * h

    center = np.array([np.round(w / 2.), np.round(h / 2.)])

    size_resized = (w_, h_)
    trans = get_affine_transform(
        center, np.array([scale_w, scale_h]), 0, size_resized, inv=inv)

    return trans, size_resized


def get_affine_transform(center,
                         input_size,
                         rot,
                         output_size,
                         shift=(0., 0.),
                         inv=False):
    """Get the affine transform matrix, given the center/scale/rot/output_size.

    Args:
        center (np.ndarray[2, ]): Center of the bounding box (x, y).
        scale (np.ndarray[2, ]): Scale of the bounding box
            wrt [width, height].
        rot (float): Rotation angle (degree).
        output_size (np.ndarray[2, ]): Size of the destination heatmaps.
        shift (0-100%): Shift translation ratio wrt the width/height.
            Default (0., 0.).
        inv (bool): Option to inverse the affine transform direction.
            (inv=False: src->dst or inv=True: dst->src)

    Returns:
        np.ndarray: The transform matrix.
    """
    assert len(center) == 2
    assert len(output_size) == 2
    assert len(shift) == 2
    if not isinstance(input_size, (np.ndarray, list)):
        input_size = np.array([input_size, input_size], dtype=np.float32)
    scale_tmp = input_size

    shift = np.array(shift)
    src_w = scale_tmp[0]
    dst_w = output_size[0]
    dst_h = output_size[1]

    rot_rad = np.pi * rot / 180
    src_dir = rotate_point([0., src_w * -0.5], rot_rad)
    dst_dir = np.array([0., dst_w * -0.5])

    src = np.zeros((3, 2), dtype=np.float32)
    src[0, :] = center + scale_tmp * shift
    src[1, :] = center + src_dir + scale_tmp * shift
    src[2, :] = _get_3rd_point(src[0, :], src[1, :])

    dst = np.zeros((3, 2), dtype=np.float32)
    dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
    dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
    dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])

    if inv:
        trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
    else:
        trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))

    return trans


def get_warp_matrix(theta, size_input, size_dst, size_target):
    """This code is based on 
        https://github.com/open-mmlab/mmpose/blob/master/mmpose/core/post_processing/post_transforms.py

        Calculate the transformation matrix under the constraint of unbiased.
    Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
    Data Processing for Human Pose Estimation (CVPR 2020).

    Args:
        theta (float): Rotation angle in degrees.
        size_input (np.ndarray): Size of input image [w, h].
        size_dst (np.ndarray): Size of output image [w, h].
        size_target (np.ndarray): Size of ROI in input plane [w, h].

    Returns:
        matrix (np.ndarray): A matrix for transformation.
    """
    theta = np.deg2rad(theta)
    matrix = np.zeros((2, 3), dtype=np.float32)
    scale_x = size_dst[0] / size_target[0]
    scale_y = size_dst[1] / size_target[1]
    matrix[0, 0] = np.cos(theta) * scale_x
    matrix[0, 1] = -np.sin(theta) * scale_x
    matrix[0, 2] = scale_x * (
        -0.5 * size_input[0] * np.cos(theta) + 0.5 * size_input[1] *
        np.sin(theta) + 0.5 * size_target[0])
    matrix[1, 0] = np.sin(theta) * scale_y
    matrix[1, 1] = np.cos(theta) * scale_y
    matrix[1, 2] = scale_y * (
        -0.5 * size_input[0] * np.sin(theta) - 0.5 * size_input[1] *
        np.cos(theta) + 0.5 * size_target[1])
    return matrix


def rotate_point(pt, angle_rad):
    """Rotate a point by an angle.

    Args:
        pt (list[float]): 2 dimensional point to be rotated
        angle_rad (float): rotation angle by radian

    Returns:
        list[float]: Rotated point.
    """
    assert len(pt) == 2
    sn, cs = np.sin(angle_rad), np.cos(angle_rad)
    new_x = pt[0] * cs - pt[1] * sn
    new_y = pt[0] * sn + pt[1] * cs
    rotated_pt = [new_x, new_y]

    return rotated_pt


def _get_3rd_point(a, b):
    """To calculate the affine matrix, three pairs of points are required. This
    function is used to get the 3rd point, given 2D points a & b.

    The 3rd point is defined by rotating vector `a - b` by 90 degrees
    anticlockwise, using b as the rotation center.

    Args:
        a (np.ndarray): point(x,y)
        b (np.ndarray): point(x,y)

    Returns:
        np.ndarray: The 3rd point.
    """
    assert len(a) == 2
    assert len(b) == 2
    direction = a - b
    third_pt = b + np.array([-direction[1], direction[0]], dtype=np.float32)

    return third_pt


class TopDownEvalAffine(object):
    """apply affine transform to image and coords

    Args:
        trainsize (list): [w, h], the standard size used to train
        use_udp (bool): whether to use Unbiased Data Processing.
        records(dict): the dict contained the image and coords

    Returns:
        records (dict): contain the image and coords after tranformed

    """

    def __init__(self, trainsize, use_udp=False):
        self.trainsize = trainsize
        self.use_udp = use_udp

    def __call__(self, image, im_info):
        rot = 0
        imshape = im_info['im_shape'][::-1]
        center = im_info['center'] if 'center' in im_info else imshape / 2.
        scale = im_info['scale'] if 'scale' in im_info else imshape
        if self.use_udp:
            trans = get_warp_matrix(
                rot, center * 2.0,
                [self.trainsize[0] - 1.0, self.trainsize[1] - 1.0], scale)
            image = cv2.warpAffine(
                image,
                trans, (int(self.trainsize[0]), int(self.trainsize[1])),
                flags=cv2.INTER_LINEAR)
        else:
            trans = get_affine_transform(center, scale, rot, self.trainsize)
            image = cv2.warpAffine(
                image,
                trans, (int(self.trainsize[0]), int(self.trainsize[1])),
                flags=cv2.INTER_LINEAR)

        return image, im_info


def expand_crop(images, rect, expand_ratio=0.3):
    imgh, imgw, c = images.shape
    label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()]
    if label != 0:
        return None, None, None
    org_rect = [xmin, ymin, xmax, ymax]
    h_half = (ymax - ymin) * (1 + expand_ratio) / 2.
    w_half = (xmax - xmin) * (1 + expand_ratio) / 2.
    if h_half > w_half * 4 / 3:
        w_half = h_half * 0.75
    center = [(ymin + ymax) / 2., (xmin + xmax) / 2.]
    ymin = max(0, int(center[0] - h_half))
    ymax = min(imgh - 1, int(center[0] + h_half))
    xmin = max(0, int(center[1] - w_half))
    xmax = min(imgw - 1, int(center[1] + w_half))
    return images[ymin:ymax, xmin:xmax, :], [xmin, ymin, xmax, ymax], org_rect