net.py 8.2 KB
Newer Older
F
frankwhzhang 已提交
1 2
import paddle.fluid as fluid

Z
zhangwenhui03 已提交
3 4 5 6 7

def all_vocab_network(vocab_size,
                      hid_size=100,
                      init_low_bound=-0.04,
                      init_high_bound=0.04):
F
frankwhzhang 已提交
8 9 10 11 12
    """ network definition """
    emb_lr_x = 10.0
    gru_lr_x = 1.0
    fc_lr_x = 1.0
    # Input data
F
frankwhzhang 已提交
13 14 15 16
    src_wordseq = fluid.data(
        name="src_wordseq", shape=[None, 1], dtype="int64", lod_level=1)
    dst_wordseq = fluid.data(
        name="dst_wordseq", shape=[None, 1], dtype="int64", lod_level=1)
F
frankwhzhang 已提交
17

F
frankwhzhang 已提交
18
    emb = fluid.embedding(
F
frankwhzhang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
        input=src_wordseq,
        size=[vocab_size, hid_size],
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
                low=init_low_bound, high=init_high_bound),
            learning_rate=emb_lr_x),
        is_sparse=True)
    fc0 = fluid.layers.fc(input=emb,
                          size=hid_size * 3,
                          param_attr=fluid.ParamAttr(
                              initializer=fluid.initializer.Uniform(
                                  low=init_low_bound, high=init_high_bound),
                              learning_rate=gru_lr_x))
    gru_h0 = fluid.layers.dynamic_gru(
        input=fc0,
        size=hid_size,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
                low=init_low_bound, high=init_high_bound),
            learning_rate=gru_lr_x))

    fc = fluid.layers.fc(input=gru_h0,
                         size=vocab_size,
                         act='softmax',
                         param_attr=fluid.ParamAttr(
                             initializer=fluid.initializer.Uniform(
                                 low=init_low_bound, high=init_high_bound),
                             learning_rate=fc_lr_x))
    cost = fluid.layers.cross_entropy(input=fc, label=dst_wordseq)
    acc = fluid.layers.accuracy(input=fc, label=dst_wordseq, k=20)
    avg_cost = fluid.layers.mean(x=cost)
    return src_wordseq, dst_wordseq, avg_cost, acc
Z
zhangwenhui03 已提交
51 52 53 54 55 56 57 58


def train_bpr_network(vocab_size, neg_size, hid_size, drop_out=0.2):
    """ network definition """
    emb_lr_x = 1.0
    gru_lr_x = 1.0
    fc_lr_x = 1.0
    # Input data
F
frankwhzhang 已提交
59 60 61 62 63
    src = fluid.data(name="src", shape=[None, 1], dtype="int64", lod_level=1)
    pos_label = fluid.data(
        name="pos_label", shape=[None, 1], dtype="int64", lod_level=1)
    label = fluid.data(
        name="label", shape=[None, neg_size + 1], dtype="int64", lod_level=1)
Z
zhangwenhui03 已提交
64

F
frankwhzhang 已提交
65
    emb_src = fluid.embedding(
Z
zhangwenhui03 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        input=src,
        size=[vocab_size, hid_size],
        param_attr=fluid.ParamAttr(
            name="emb",
            initializer=fluid.initializer.XavierInitializer(),
            learning_rate=emb_lr_x))

    emb_src_drop = fluid.layers.dropout(emb_src, dropout_prob=drop_out)

    fc0 = fluid.layers.fc(input=emb_src_drop,
                          size=hid_size * 3,
                          param_attr=fluid.ParamAttr(
                              name="gru_fc",
                              initializer=fluid.initializer.XavierInitializer(),
                              learning_rate=gru_lr_x),
                          bias_attr=False)
    gru_h0 = fluid.layers.dynamic_gru(
        input=fc0,
        size=hid_size,
        param_attr=fluid.ParamAttr(
            name="dy_gru.param",
            initializer=fluid.initializer.XavierInitializer(),
            learning_rate=gru_lr_x),
        bias_attr="dy_gru.bias")
    gru_h0_drop = fluid.layers.dropout(gru_h0, dropout_prob=drop_out)

    label_re = fluid.layers.sequence_reshape(input=label, new_dim=1)
F
frankwhzhang 已提交
93
    emb_label1 = fluid.embedding(
Z
zhangwenhui03 已提交
94 95 96 97 98 99 100
        input=label_re,
        size=[vocab_size, hid_size],
        param_attr=fluid.ParamAttr(
            name="emb",
            initializer=fluid.initializer.XavierInitializer(),
            learning_rate=emb_lr_x))

F
frankwhzhang 已提交
101
    emb_label = fluid.layers.squeeze(input=emb_label1, axes=[1]) 
Z
zhangwenhui03 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    emb_label_drop = fluid.layers.dropout(emb_label, dropout_prob=drop_out)

    gru_exp = fluid.layers.expand(
        x=gru_h0_drop, expand_times=[1, (neg_size + 1)])
    gru = fluid.layers.sequence_reshape(input=gru_exp, new_dim=hid_size)

    ele_mul = fluid.layers.elementwise_mul(emb_label_drop, gru)
    red_sum = fluid.layers.reduce_sum(input=ele_mul, dim=1, keep_dim=True)

    pre = fluid.layers.sequence_reshape(input=red_sum, new_dim=(neg_size + 1))

    cost = fluid.layers.bpr_loss(input=pre, label=pos_label)
    cost_sum = fluid.layers.reduce_sum(input=cost)
    return src, pos_label, label, cost_sum


def train_cross_entropy_network(vocab_size, neg_size, hid_size, drop_out=0.2):
    """ network definition """
    emb_lr_x = 1.0
    gru_lr_x = 1.0
    fc_lr_x = 1.0
    # Input data
F
frankwhzhang 已提交
124 125 126 127 128
    src = fluid.data(name="src", shape=[None, 1], dtype="int64", lod_level=1)
    pos_label = fluid.data(
        name="pos_label", shape=[None, 1], dtype="int64", lod_level=1)
    label = fluid.data(
        name="label", shape=[None, neg_size + 1], dtype="int64", lod_level=1)
Z
zhangwenhui03 已提交
129

F
frankwhzhang 已提交
130
    emb_src = fluid.embedding(
Z
zhangwenhui03 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        input=src,
        size=[vocab_size, hid_size],
        param_attr=fluid.ParamAttr(
            name="emb",
            initializer=fluid.initializer.XavierInitializer(),
            learning_rate=emb_lr_x))

    emb_src_drop = fluid.layers.dropout(emb_src, dropout_prob=drop_out)

    fc0 = fluid.layers.fc(input=emb_src_drop,
                          size=hid_size * 3,
                          param_attr=fluid.ParamAttr(
                              name="gru_fc",
                              initializer=fluid.initializer.XavierInitializer(),
                              learning_rate=gru_lr_x),
                          bias_attr=False)
    gru_h0 = fluid.layers.dynamic_gru(
        input=fc0,
        size=hid_size,
        param_attr=fluid.ParamAttr(
            name="dy_gru.param",
            initializer=fluid.initializer.XavierInitializer(),
            learning_rate=gru_lr_x),
        bias_attr="dy_gru.bias")
    gru_h0_drop = fluid.layers.dropout(gru_h0, dropout_prob=drop_out)

    label_re = fluid.layers.sequence_reshape(input=label, new_dim=1)
F
frankwhzhang 已提交
158
    emb_label1 = fluid.embedding(
Z
zhangwenhui03 已提交
159 160 161 162 163 164
        input=label_re,
        size=[vocab_size, hid_size],
        param_attr=fluid.ParamAttr(
            name="emb",
            initializer=fluid.initializer.XavierInitializer(),
            learning_rate=emb_lr_x))
F
frankwhzhang 已提交
165
    emb_label = fluid.layers.squeeze(input=emb_label1, axes=[1]) 
Z
zhangwenhui03 已提交
166 167 168 169 170 171 172 173 174 175

    emb_label_drop = fluid.layers.dropout(emb_label, dropout_prob=drop_out)

    gru_exp = fluid.layers.expand(
        x=gru_h0_drop, expand_times=[1, (neg_size + 1)])
    gru = fluid.layers.sequence_reshape(input=gru_exp, new_dim=hid_size)

    ele_mul = fluid.layers.elementwise_mul(emb_label_drop, gru)
    red_sum = fluid.layers.reduce_sum(input=ele_mul, dim=1, keep_dim=True)

Z
zhangwenhui03 已提交
176 177
    pre_ = fluid.layers.sequence_reshape(input=red_sum, new_dim=(neg_size + 1))
    pre = fluid.layers.softmax(input=pre_)
Z
zhangwenhui03 已提交
178 179 180 181 182 183

    cost = fluid.layers.cross_entropy(input=pre, label=pos_label)
    cost_sum = fluid.layers.reduce_sum(input=cost)
    return src, pos_label, label, cost_sum


Z
add ssr  
zhangwenhui03 已提交
184
def infer_network(vocab_size, batch_size, hid_size, dropout=0.2):
F
frankwhzhang 已提交
185 186
    src = fluid.data(name="src", shape=[None, 1], dtype="int64", lod_level=1)
    emb_src = fluid.embedding(
Z
zhangwenhui03 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        input=src, size=[vocab_size, hid_size], param_attr="emb")
    emb_src_drop = fluid.layers.dropout(
        emb_src, dropout_prob=dropout, is_test=True)

    fc0 = fluid.layers.fc(input=emb_src_drop,
                          size=hid_size * 3,
                          param_attr="gru_fc",
                          bias_attr=False)
    gru_h0 = fluid.layers.dynamic_gru(
        input=fc0,
        size=hid_size,
        param_attr="dy_gru.param",
        bias_attr="dy_gru.bias")
    gru_h0_drop = fluid.layers.dropout(
        gru_h0, dropout_prob=dropout, is_test=True)

F
frankwhzhang 已提交
203
    all_label = fluid.data(
Z
zhangwenhui03 已提交
204 205
        name="all_label",
        shape=[vocab_size, 1],
F
frankwhzhang 已提交
206 207
        dtype="int64")
    emb_all_label = fluid.embedding(
Z
zhangwenhui03 已提交
208 209 210 211 212 213 214
        input=all_label, size=[vocab_size, hid_size], param_attr="emb")
    emb_all_label_drop = fluid.layers.dropout(
        emb_all_label, dropout_prob=dropout, is_test=True)

    all_pre = fluid.layers.matmul(
        gru_h0_drop, emb_all_label_drop, transpose_y=True)

F
frankwhzhang 已提交
215 216
    pos_label = fluid.data(
        name="pos_label", shape=[None, 1], dtype="int64", lod_level=1)
Z
zhangwenhui03 已提交
217 218
    acc = fluid.layers.accuracy(input=all_pre, label=pos_label, k=20)
    return acc