ctr_dataset_reader.py 3.0 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import logging
import sys

import paddle.fluid.incubate.data_generator as data_generator

logging.basicConfig()
logger = logging.getLogger("paddle")
logger.setLevel(logging.INFO)


class CriteoDataset(data_generator.MultiSlotDataGenerator):
    def __init__(self, sparse_feature_dim, trainer_id, is_train, trainer_num):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
        self.cont_diff_ = [20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
        self.hash_dim_ = sparse_feature_dim
        # here, training data are lines with line_index < train_idx_
        self.train_idx_ = 41256555
        self.continuous_range_ = range(1, 14)
        self.categorical_range_ = range(14, 40)
        self.trainer_id_ = trainer_id
        self.line_idx_ = 0
        self.is_train_ = is_train
        self.trainer_num_ = trainer_num

    def generate_sample(self, line):
        def iter():
            fs = line.strip().split('\t')
            self.line_idx_ += 1
            if self.is_train_ and self.line_idx_ > self.train_idx_:
                return
            elif not is_train and self.line_idx_ <= self.train_idx_:
                return
            if self.line_idx_ % self.trainer_num_ != self.trainer_id_:
                return
            features = line.rstrip('\n').split('\t')
            dense_feature = []
            sparse_feature = []
            for idx in self.continuous_range_:
                if features[idx] == '':
                    dense_feature.append(0.0)
                else:
                    dense_feature.append((float(features[idx]) - self.cont_min_[idx - 1]) / self.cont_diff_[idx - 1])
            for idx in self.categorical_range_:
                sparse_feature.append([hash(str(idx) + features[idx]) % self.hash_dim_])

            label = [int(features[0])]
            yield [dense_feature] + sparse_feature + [label]
            yield ("dnn_data", dnn_input), \
                  ("lr_data", lr_input), \
                  ("click", click)

        return iter


if __name__ == "__main__":
    sparse_feature_dim = sys.argv[1]
    trainer_id = sys.argv[2]
    is_train = bool(sys.argv[3])
    trainer_num = sys.argv[4]

    pairwise_reader = CriteoDataset(sparse_feature_dim, trainer_id, is_train, trainer_num)
    pairwise_reader.run_from_stdin()