nets.py 3.9 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers.nn as nn
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf
import paddle.fluid.layers.io as io
from PaddleRec.multiview_simnet.nets import BowEncoder
from PaddleRec.multiview_simnet.nets import GrnnEncoder
D
dongdaxiang 已提交
22

D
dongdaxiang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

class PairwiseHingeLoss(object):
    def __init__(self, margin=0.8):
        self.margin = margin
    def forward(self, pos, neg):
        loss_part1 = nn.elementwise_sub(
            tensor.fill_constant_batch_size_like(
                input=pos,
                shape=[-1, 1],
                value=self.margin,
                dtype='float32'),
            pos)
        loss_part2 = nn.elementwise_add(loss_part1, neg)
        loss_part3 = nn.elementwise_max(
            tensor.fill_constant_batch_size_like(
                input=loss_part2, 
                shape=[-1, 1],
                value=0.0, 
                dtype='float32'),
            loss_part2)
        return loss_part3


class SequenceSemanticRetrieval(object):
    """ sequence semantic retrieval model """
    
    def __init__(self, embedding_size, embedding_dim, hidden_size):
        self.embedding_size = embedding_size
        self.embedding_dim = embedding_dim
        self.emb_shape = [self.embedding_size, self.embedding_dim]
        self.hidden_size = hidden_size
        self.user_encoder = GrnnEncoder(hidden_size=hidden_size)
        self.item_encoder = BowEncoder()
        self.pairwise_hinge_loss = PairwiseHingeLoss()
        
    def get_correct(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
        correct = nn.reduce_sum(less)
        return correct

    def train(self):
        user_data = io.data(
            name="user", shape=[1], dtype="int64", lod_level=1
        )
        pos_item_data = io.data(
            name="p_item", shape=[1], dtype="int64", lod_level=1
        )
        neg_item_data = io.data(
            name="n_item", shape=[1], dtype="int64", lod_level=1
        )
        user_emb = nn.embedding(
            input=user_data, size=self.emb_shape, param_attr="emb.item"
        )
        pos_item_emb = nn.embedding(
            input=pos_item_data, size=self.emb_shape, param_attr="emb.item"
        )
        neg_item_emb = nn.embedding(
            input=neg_item_data, size=self.emb_shape, param_attr="emb.item"
        )
        user_enc = self.user_encoder.forward(user_emb)
        pos_item_enc = self.item_encoder.forward(pos_item_emb)
        neg_item_enc = self.item_encoder.forward(neg_item_emb)
        user_hid = nn.fc(
            input=user_enc, size=self.hidden_size, param_attr='user.w', bias_attr="user.b"
        )
        pos_item_hid = nn.fc(
            input=pos_item_enc, size=self.hidden_size, param_attr='item.w', bias_attr="item.b"
        )
        neg_item_hid = nn.fc(
            input=neg_item_enc, size=self.hidden_size, param_attr='item.w', bias_attr="item.b"
        )
        cos_pos = nn.cos_sim(user_hid, pos_item_hid)
        cos_neg = nn.cos_sim(user_hid, neg_item_hid)
        hinge_loss = self.pairwise_hinge_loss.forward(cos_pos, cos_neg)
        avg_cost = nn.mean(hinge_loss)
        correct = self.get_correct(cos_neg, cos_pos)
D
dongdaxiang 已提交
99

D
dongdaxiang 已提交
100 101
        return [user_data, pos_item_data, neg_item_data], \
            pos_item_hid, neg_item_hid, avg_cost, correct