network_conf.py 6.4 KB
Newer Older
zhaoyijin666's avatar
zhaoyijin666 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import paddle.v2 as paddle
import cPickle


class DNNmodel(object):
    """
    Deep Neural Networks for YouTube candidate generation
    """

    def __init__(self,
                 dnn_layer_dims=None,
                 feature_dict=None,
                 item_freq=None,
                 is_infer=False):
        """
        initialize model
        """
        self._dnn_layer_dims = dnn_layer_dims
        self._feature_dict = feature_dict
        self._item_freq = item_freq

        self._is_infer = is_infer

        # build model
        self._build_input_layer()
        self._build_embedding_layer()
        self.model_cost = self._build_dnn_model()

    def _build_input_layer(self):
        """
        build input layer
        """
        self._history_clicked_items = paddle.layer.data(
            name="history_clicked_items",
            type=paddle.data_type.integer_value_sequence(
                len(self._feature_dict['history_clicked_items'])))
        self._history_clicked_categories = paddle.layer.data(
            name="history_clicked_categories",
            type=paddle.data_type.integer_value_sequence(
                len(self._feature_dict['history_clicked_categories'])))
        self._history_clicked_tags = paddle.layer.data(
            name="history_clicked_tags",
            type=paddle.data_type.integer_value_sequence(
                len(self._feature_dict['history_clicked_tags'])))
        self._user_id = paddle.layer.data(
            name="user_id",
            type=paddle.data_type.integer_value(
                len(self._feature_dict['user_id'])))
        self._province = paddle.layer.data(
            name="province",
            type=paddle.data_type.integer_value(
                len(self._feature_dict['province'])))
        self._city = paddle.layer.data(
            name="city",
            type=paddle.data_type.integer_value(
                len(self._feature_dict['city'])))
        self._phone = paddle.layer.data(
            name="phone",
            type=paddle.data_type.integer_value(
                len(self._feature_dict['phone'])))
        self._target_item = paddle.layer.data(
            name="target_item",
            type=paddle.data_type.integer_value(
                len(self._feature_dict['history_clicked_items'])))

    def _create_emb_attr(self, name):
        """
        create embedding parameter
        """
        return paddle.attr.Param(
            name=name,
            initial_std=0.001,
            learning_rate=1,
            l2_rate=0,
            sparse_update=True)

    def _build_embedding_layer(self):
        """
        build embedding layer
        """
        self._user_id_emb = paddle.layer.embedding(
            input=self._user_id,
            size=64,
            param_attr=self._create_emb_attr('_proj_user_id'))
        self._province_emb = paddle.layer.embedding(
            input=self._province,
            size=8,
            param_attr=self._create_emb_attr('_proj_province'))
        self._city_emb = paddle.layer.embedding(
            input=self._city,
            size=16,
            param_attr=self._create_emb_attr('_proj_city'))
        self._phone_emb = paddle.layer.embedding(
            input=self._phone,
            size=16,
            param_attr=self._create_emb_attr('_proj_phone'))
        self._history_clicked_items_emb = paddle.layer.embedding(
            input=self._history_clicked_items,
            size=64,
            param_attr=self._create_emb_attr('_proj_history_clicked_items'))
        self._history_clicked_categories_emb = paddle.layer.embedding(
            input=self._history_clicked_categories,
            size=8,
            param_attr=self._create_emb_attr(
                '_proj_history_clicked_categories'))
        self._history_clicked_tags_emb = paddle.layer.embedding(
            input=self._history_clicked_tags,
            size=64,
            param_attr=self._create_emb_attr('_proj_history_clicked_tags'))

    def _build_dnn_model(self):
        """
        build dnn model
        """
        self._rnn_cell = paddle.networks.simple_lstm(
            input=self._history_clicked_items_emb, size=64)
        self._lstm_last = paddle.layer.pooling(
            input=self._rnn_cell, pooling_type=paddle.pooling.Max())
        self._avg_emb_cats = paddle.layer.pooling(
            input=self._history_clicked_categories_emb,
            pooling_type=paddle.pooling.Avg())
        self._avg_emb_tags = paddle.layer.pooling(
            input=self._history_clicked_tags_emb,
            pooling_type=paddle.pooling.Avg())
        self._fc_0 = paddle.layer.fc(
            name="Relu1",
            input=[
                self._lstm_last, self._user_id_emb, self._city_emb,
                self._phone_emb
            ],
            size=self._dnn_layer_dims[0],
            act=paddle.activation.Relu())

        self._fc_1 = paddle.layer.fc(
            name="Relu2",
            input=self._fc_0,
            size=self._dnn_layer_dims[1],
            act=paddle.activation.Relu())

        if not self._is_infer:
            return paddle.layer.nce(
                input=self._fc_1,
                label=self._target_item,
                num_classes=len(self._feature_dict['history_clicked_items']),
                param_attr=paddle.attr.Param(name="nce_w"),
                bias_attr=paddle.attr.Param(name="nce_b"),
                act=paddle.activation.Sigmoid(),
                num_neg_samples=5,
                neg_distribution=self._item_freq)
        else:
            self.prediction_layer = paddle.layer.mixed(
                size=len(self._feature_dict['history_clicked_items']),
                input=paddle.layer.trans_full_matrix_projection(
                    self._fc_1, param_attr=paddle.attr.Param(name="nce_w")),
                act=paddle.activation.Softmax(),
                bias_attr=paddle.attr.Param(name="nce_b"))
            return self.prediction_layer, self._fc_1


if __name__ == "__main__":
    # this is to test and debug the network topology defination.
    # please set the hyper-parameters as needed.
    item_freq_path = "./output/item_freq.pkl"
    with open(item_freq_path) as f:
        item_freq = cPickle.load(f)

    feature_dict_path = "./output/feature_dict.pkl"
    with open(feature_dict_path) as f:
        feature_dict = cPickle.load(f)

    a = DNNmodel(
        dnn_layer_dims=[256, 31],
        feature_dict=feature_dict,
        item_freq=item_freq,
        is_infer=False)