metrics_util.py 19.3 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

15 16 17 18 19 20 21 22
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division

import logging

import numpy as np
23
import json
24 25
from metrics.youtube8m import eval_util as youtube8m_metrics
from metrics.kinetics import accuracy_metrics as kinetics_metrics
26
from metrics.multicrop_test import multicrop_test_metrics as multicrop_test_metrics
27
from metrics.detections import detection_metrics as detection_metrics
28 29 30
from metrics.bmn_metrics import bmn_proposal_metrics as bmn_proposal_metrics
from metrics.bsn_metrics import bsn_tem_metrics as bsn_tem_metrics
from metrics.bsn_metrics import bsn_pem_metrics as bsn_pem_metrics
H
huangjun12 已提交
31
from metrics.ets_metrics import ets_metrics as ets_metrics
32 33 34 35 36

logger = logging.getLogger(__name__)


class Metrics(object):
37
    def __init__(self, name, mode, metrics_args):
38 39 40
        """Not implemented"""
        pass

41
    def calculate_and_log_out(self, fetch_list, info=''):
42 43 44
        """Not implemented"""
        pass

45
    def accumulate(self, fetch_list, info=''):
46 47 48
        """Not implemented"""
        pass

49
    def finalize_and_log_out(self, info='', savedir='./'):
50 51 52 53 54 55 56 57 58
        """Not implemented"""
        pass

    def reset(self):
        """Not implemented"""
        pass


class Youtube8mMetrics(Metrics):
59
    def __init__(self, name, mode, metrics_args):
60
        self.name = name
D
dengkaipeng 已提交
61
        self.mode = mode
62 63
        self.num_classes = metrics_args['MODEL']['num_classes']
        self.topk = metrics_args['MODEL']['topk']
64 65
        self.calculator = youtube8m_metrics.EvaluationMetrics(self.num_classes,
                                                              self.topk)
66 67
        if self.mode == 'infer':
            self.infer_results = []
68

69 70 71 72
    def calculate_and_log_out(self, fetch_list, info=''):
        loss = np.mean(np.array(fetch_list[0]))
        pred = np.array(fetch_list[1])
        label = np.array(fetch_list[2])
73 74 75 76 77 78 79
        hit_at_one = youtube8m_metrics.calculate_hit_at_one(pred, label)
        perr = youtube8m_metrics.calculate_precision_at_equal_recall_rate(pred,
                                                                          label)
        gap = youtube8m_metrics.calculate_gap(pred, label)
        logger.info(info + ' , loss = {0}, Hit@1 = {1}, PERR = {2}, GAP = {3}'.format(\
                     '%.6f' % loss, '%.2f' % hit_at_one, '%.2f' % perr, '%.2f' % gap))

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def accumulate(self, fetch_list, info=''):
        if self.mode == 'infer':
            predictions = np.array(fetch_list[0])
            video_id = fetch_list[1]
            for i in range(len(predictions)):
                topk_inds = predictions[i].argsort()[0 - self.topk:]
                topk_inds = topk_inds[::-1]
                preds = predictions[i][topk_inds]
                self.infer_results.append(
                    (video_id[i], topk_inds.tolist(), preds.tolist()))
        else:
            loss = np.array(fetch_list[0])
            pred = np.array(fetch_list[1])
            label = np.array(fetch_list[2])
            self.calculator.accumulate(loss, pred, label)

    def finalize_and_log_out(self, info='', savedir='./'):
        if self.mode == 'infer':
            for item in self.infer_results:
                logger.info('video_id {} , topk({}) preds: \n'.format(item[
                    0], self.topk))
                for i in range(len(item[1])):
                    logger.info('\t    class: {},  probability  {} \n'.format(
                        item[1][i], item[2][i]))
            # save infer result into output dir
            #json.dump(self.infer_results, xxxx)
106

107 108 109
        else:
            epoch_info_dict = self.calculator.get()
            logger.info(info + '\tavg_hit_at_one: {0},\tavg_perr: {1},\tavg_loss :{2},\taps: {3},\tgap:{4}'\
110 111 112 113 114
                     .format(epoch_info_dict['avg_hit_at_one'], epoch_info_dict['avg_perr'], \
                             epoch_info_dict['avg_loss'], epoch_info_dict['aps'], epoch_info_dict['gap']))

    def reset(self):
        self.calculator.clear()
115 116
        if self.mode == 'infer':
            self.infer_results = []
117 118 119


class Kinetics400Metrics(Metrics):
120
    def __init__(self, name, mode, metrics_args):
121
        self.name = name
D
dengkaipeng 已提交
122
        self.mode = mode
123
        self.topk = metrics_args['MODEL']['topk']
124
        self.calculator = kinetics_metrics.MetricsCalculator(name, mode.lower())
125 126 127 128 129 130 131 132
        if self.mode == 'infer':
            self.infer_results = []
            self.kinetics_labels = metrics_args['INFER']['kinetics_labels']
            self.labels_list = json.load(open(self.kinetics_labels))

    def calculate_and_log_out(self, fetch_list, info=''):
        if len(fetch_list) == 3:
            loss = fetch_list[0]
133
            loss = np.mean(np.array(loss))
134 135
            pred = np.array(fetch_list[1])
            label = np.array(fetch_list[2])
136 137
        else:
            loss = 0.
138 139
            pred = np.array(fetch_list[0])
            label = np.array(fetch_list[1])
140 141 142
        acc1, acc5 = self.calculator.calculate_metrics(loss, pred, label)
        logger.info(info + '\tLoss: {},\ttop1_acc: {}, \ttop5_acc: {}'.format('%.6f' % loss, \
                       '%.2f' % acc1, '%.2f' % acc5))
X
xiegegege 已提交
143
        return loss
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    def accumulate(self, fetch_list, info=''):
        if self.mode == 'infer':
            predictions = np.array(fetch_list[0])
            video_id = fetch_list[1]
            for i in range(len(predictions)):
                topk_inds = predictions[i].argsort()[0 - self.topk:]
                topk_inds = topk_inds[::-1]
                preds = predictions[i][topk_inds]
                self.infer_results.append(
                    (video_id[i], topk_inds.tolist(), preds.tolist()))
        else:
            if len(fetch_list) == 3:
                loss = fetch_list[0]
                loss = np.mean(np.array(loss))
                pred = np.array(fetch_list[1])
                label = np.array(fetch_list[2])
            else:
                loss = 0.
                pred = np.array(fetch_list[0])
                label = np.array(fetch_list[1])
            self.calculator.accumulate(loss, pred, label)

    def finalize_and_log_out(self, info='', savedir='./'):
        if self.mode == 'infer':
            for item in self.infer_results:
                logger.info('video_id {} , topk({}) preds: \n'.format(item[
                    0], self.topk))
                for i in range(len(item[1])):
                    logger.info('\t    class: {},  probability:  {} \n'.format(
                        self.labels_list[item[1][i]], item[2][i]))
            # save infer results
        else:
            self.calculator.finalize_metrics()
            metrics_dict = self.calculator.get_computed_metrics()
            loss = metrics_dict['avg_loss']
            acc1 = metrics_dict['avg_acc1']
            acc5 = metrics_dict['avg_acc5']
            logger.info(info + '\tLoss: {},\ttop1_acc: {}, \ttop5_acc: {}'.format('%.6f' % loss, \
183 184 185 186
                       '%.2f' % acc1, '%.2f' % acc5))

    def reset(self):
        self.calculator.reset()
187 188
        if self.mode == 'infer':
            self.infer_results = []
189 190


191 192
class MulticropMetrics(Metrics):
    def __init__(self, name, mode, metrics_args):
193
        self.name = name
D
dengkaipeng 已提交
194
        self.mode = mode
195
        if (mode == 'test') or (mode == 'infer'):
196
            args = {}
197 198
            args['num_test_clips'] = metrics_args[mode.upper()][
                'num_test_clips']
199 200
            args['dataset_size'] = metrics_args.TEST.dataset_size
            args['filename_gt'] = metrics_args.TEST.filename_gt
201 202
            args['checkpoint_dir'] = metrics_args[mode.upper()][
                'checkpoint_dir']
203
            args['num_classes'] = metrics_args.MODEL.num_classes
204
            args['labels_list'] = metrics_args.INFER.kinetics_labels
205 206
            self.calculator = multicrop_test_metrics.MetricsCalculator(
                name, mode.lower(), **args)
207 208
        else:
            self.calculator = kinetics_metrics.MetricsCalculator(name,
D
dengkaipeng 已提交
209
                                                                 mode.lower())
210

211 212
    def calculate_and_log_out(self, fetch_list, info=''):
        if (self.mode == 'test') or (self.mode == 'infer'):
213 214
            pass
        else:
215 216
            if len(fetch_list) == 3:
                loss = fetch_list[0]
217
                loss = np.mean(np.array(loss))
218 219
                pred = fetch_list[1]
                label = fetch_list[2]
220 221
            else:
                loss = 0.
222 223
                pred = fetch_list[0]
                label = fetch_list[1]
224 225 226 227
            acc1, acc5 = self.calculator.calculate_metrics(loss, pred, label)
            logger.info(info + '\tLoss: {},\ttop1_acc: {}, \ttop5_acc: {}'.format('%.6f' % loss, \
                                   '%.2f' % acc1, '%.2f' % acc5))

228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def accumulate(self, fetch_list):
        if self.mode == 'test':
            pred = fetch_list[0]
            label = fetch_list[1]
            self.calculator.accumulate(pred, label)
        elif self.mode == 'infer':
            pred = fetch_list[0]
            video_id = fetch_list[1]
            self.calculator.accumulate_infer_results(pred, video_id)
        else:
            loss = fetch_list[0]
            pred = fetch_list[1]
            label = fetch_list[2]
            self.calculator.accumulate(loss, pred, label)
242

243
    def finalize_and_log_out(self, info='', savedir='./'):
D
dengkaipeng 已提交
244
        if self.mode == 'test':
245
            self.calculator.finalize_metrics()
246 247
        elif self.mode == 'infer':
            self.calculator.finalize_infer_metrics()
248 249 250 251 252 253 254 255 256 257 258 259 260
        else:
            self.calculator.finalize_metrics()
            metrics_dict = self.calculator.get_computed_metrics()
            loss = metrics_dict['avg_loss']
            acc1 = metrics_dict['avg_acc1']
            acc5 = metrics_dict['avg_acc5']
            logger.info(info + '\tLoss: {},\ttop1_acc: {}, \ttop5_acc: {}'.format('%.6f' % loss, \
                           '%.2f' % acc1, '%.2f' % acc5))

    def reset(self):
        self.calculator.reset()


261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
class DetectionMetrics(Metrics):
    def __init__(self, name, mode, cfg):
        self.name = name
        self.mode = mode
        args = {}
        args['score_thresh'] = cfg.TEST.score_thresh
        args['nms_thresh'] = cfg.TEST.nms_thresh
        args['sigma_thresh'] = cfg.TEST.sigma_thresh
        args['soft_thresh'] = cfg.TEST.soft_thresh
        args['class_label_file'] = cfg.TEST.class_label_file
        args['video_duration_file'] = cfg.TEST.video_duration_file
        args['gt_label_file'] = cfg.TEST.filelist
        args['mode'] = mode
        args['name'] = name
        self.calculator = detection_metrics.MetricsCalculator(**args)

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    def calculate_and_log_out(self, fetch_list, info=''):
        total_loss = np.array(fetch_list[0])
        loc_loss = np.array(fetch_list[1])
        cls_loss = np.array(fetch_list[2])
        logger.info(
            info + '\tLoss = {}, \tloc_loss = {}, \tcls_loss = {}'.format(
                np.mean(total_loss), np.mean(loc_loss), np.mean(cls_loss)))

    def accumulate(self, fetch_list):
        if self.mode == 'infer':
            self.calculator.accumulate_infer_results(fetch_list)
        else:
            self.calculator.accumulate(fetch_list)

    def finalize_and_log_out(self, info='', savedir='./'):
        if self.mode == 'infer':
            self.calculator.finalize_infer_metrics(savedir)
            #pass
        else:
            self.calculator.finalize_metrics(savedir)
            metrics_dict = self.calculator.get_computed_metrics()
            loss = metrics_dict['avg_loss']
            loc_loss = metrics_dict['avg_loc_loss']
            cls_loss = metrics_dict['avg_cls_loss']
            logger.info(info + '\tLoss: {},\tloc_loss: {}, \tcls_loss: {}'.format('%.6f' % loss, \
                           '%.6f' % loc_loss, '%.6f' % cls_loss))
303 304 305 306 307

    def reset(self):
        self.calculator.reset()


308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
class BmnMetrics(Metrics):
    def __init__(self, name, mode, cfg):
        self.name = name
        self.mode = mode
        self.calculator = bmn_proposal_metrics.MetricsCalculator(
            cfg=cfg, name=self.name, mode=self.mode)

    def calculate_and_log_out(self, fetch_list, info=''):
        total_loss = np.array(fetch_list[0])
        tem_loss = np.array(fetch_list[1])
        pem_reg_loss = np.array(fetch_list[2])
        pem_cls_loss = np.array(fetch_list[3])
        logger.info(
            info + '\tLoss = {}, \ttem_loss = {}, \tpem_reg_loss = {}, \tpem_cls_loss = {}'.format(
                '%.04f' % np.mean(total_loss), '%.04f' % np.mean(tem_loss), \
                '%.04f' % np.mean(pem_reg_loss), '%.04f' % np.mean(pem_cls_loss)))

    def accumulate(self, fetch_list):
        if self.mode == 'infer':
            self.calculator.accumulate_infer_results(fetch_list)
        else:
            self.calculator.accumulate(fetch_list)

    def finalize_and_log_out(self, info='', savedir='./'):
        if self.mode == 'infer':
            self.calculator.finalize_infer_metrics()
        else:
            self.calculator.finalize_metrics()
            metrics_dict = self.calculator.get_computed_metrics()
            loss = metrics_dict['avg_loss']
            tem_loss = metrics_dict['avg_tem_loss']
            pem_reg_loss = metrics_dict['avg_pem_reg_loss']
            pem_cls_loss = metrics_dict['avg_pem_cls_loss']
            logger.info(
                info +
                '\tLoss = {}, \ttem_loss = {}, \tpem_reg_loss = {}, \tpem_cls_loss = {}'.
                format('%.04f' % loss, '%.04f' % tem_loss, '%.04f' %
                       pem_reg_loss, '%.04f' % pem_cls_loss))

    def reset(self):
        self.calculator.reset()


class BsnTemMetrics(Metrics):
    def __init__(self, name, mode, cfg):
        self.name = name
        self.mode = mode
        self.calculator = bsn_tem_metrics.MetricsCalculator(
            cfg=cfg, name=self.name, mode=self.mode)

    def calculate_and_log_out(self, fetch_list, info=''):
        total_loss = np.array(fetch_list[0])
        start_loss = np.array(fetch_list[1])
        end_loss = np.array(fetch_list[2])
        action_loss = np.array(fetch_list[3])
        logger.info(
            info +
            '\tLoss = {}, \tstart_loss = {}, \tend_loss = {}, \taction_loss = {}'.
            format('%.04f' % np.mean(total_loss), '%.04f' % np.mean(start_loss),
                   '%.04f' % np.mean(end_loss), '%.04f' % np.mean(action_loss)))

    def accumulate(self, fetch_list):
        if self.mode == 'infer':
            self.calculator.accumulate_infer_results(fetch_list)
        else:
            self.calculator.accumulate(fetch_list)

    def finalize_and_log_out(self, info='', savedir='./'):
        if self.mode == 'infer':
            self.calculator.finalize_infer_metrics()
        else:
            self.calculator.finalize_metrics()
            metrics_dict = self.calculator.get_computed_metrics()
            loss = metrics_dict['avg_loss']
            start_loss = metrics_dict['avg_start_loss']
            end_loss = metrics_dict['avg_end_loss']
            action_loss = metrics_dict['avg_action_loss']
            logger.info(
                info +
                '\tLoss = {}, \tstart_loss = {}, \tend_loss = {}, \taction_loss = {}'.
                format('%.04f' % loss, '%.04f' % start_loss, '%.04f' % end_loss,
                       '%.04f' % action_loss))

    def reset(self):
        self.calculator.reset()


class BsnPemMetrics(Metrics):
    def __init__(self, name, mode, cfg):
        self.name = name
        self.mode = mode
        self.calculator = bsn_pem_metrics.MetricsCalculator(
            cfg=cfg, name=self.name, mode=self.mode)

    def calculate_and_log_out(self, fetch_list, info=''):
        total_loss = np.array(fetch_list[0])
        logger.info(info + '\tLoss = {}'.format('%.04f' % np.mean(total_loss)))

    def accumulate(self, fetch_list):
        if self.mode == 'infer':
            self.calculator.accumulate_infer_results(fetch_list)
        else:
            self.calculator.accumulate(fetch_list)

    def finalize_and_log_out(self, info='', savedir='./'):
        if self.mode == 'infer':
            self.calculator.finalize_infer_metrics()
        else:
            self.calculator.finalize_metrics()
            metrics_dict = self.calculator.get_computed_metrics()
            loss = metrics_dict['avg_loss']
            logger.info(info + '\tLoss = {}'.format('%.04f' % loss))

    def reset(self):
        self.calculator.reset()


H
huangjun12 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
class ETSMetrics(Metrics):
    def __init__(self, name, mode, cfg):
        self.name = name
        self.mode = mode
        args = {}
        args['dict_file'] = cfg.MODEL.dict_file
        args['mode'] = mode
        args['name'] = name
        self.calculator = ets_metrics.MetricsCalculator(**args)


    def calculate_and_log_out(self, fetch_list, info=''):
        if (self.mode == 'train') or (self.mode == 'valid'):
            loss = np.array(fetch_list[0])
            logger.info(
            info + '\tLoss = {}'.format('%.08f' % np.mean(loss)))
        elif self.mode == "test":
            translation_ids = np.array(fetch_list[0])
            translation_scores = np.array(fetch_list[1])
            logger.info(
                info + '\ttranslation_ids = {}, \ttranslation_scores = {}'.format(
                    '%.01f' % np.mean(translation_ids), '%.04f' % np.mean(translation_scores)))

    def accumulate(self, fetch_list):
        self.calculator.accumulate(fetch_list)

    def finalize_and_log_out(self, info='', savedir='./'):
        if self.mode == 'valid':
            logger.info(info)
        else:  #test or infer
            self.calculator.finalize_metrics(savedir)
            if self.mode == 'test':
                logger.info(info + 'please refer to metrics/ets_metrics/README.md to get accuracy')

    def reset(self):
        self.calculator.reset()


463 464 465 466 467 468 469 470 471
class MetricsZoo(object):
    def __init__(self):
        self.metrics_zoo = {}

    def regist(self, name, metrics):
        assert metrics.__base__ == Metrics, "Unknow model type {}".format(
            type(metrics))
        self.metrics_zoo[name] = metrics

472
    def get(self, name, mode, cfg):
473 474
        for k, v in self.metrics_zoo.items():
            if k == name:
475
                return v(name, mode, cfg)
476 477 478 479 480 481 482 483 484 485 486
        raise MetricsNotFoundError(name, self.metrics_zoo.keys())


# singleton metrics_zoo
metrics_zoo = MetricsZoo()


def regist_metrics(name, metrics):
    metrics_zoo.regist(name, metrics)


487 488
def get_metrics(name, mode, cfg):
    return metrics_zoo.get(name, mode, cfg)
489 490


D
dengkaipeng 已提交
491
# sort by alphabet
492
regist_metrics("ATTENTIONCLUSTER", Youtube8mMetrics)
D
dengkaipeng 已提交
493 494 495
regist_metrics("ATTENTIONLSTM", Youtube8mMetrics)
regist_metrics("NEXTVLAD", Youtube8mMetrics)
regist_metrics("NONLOCAL", MulticropMetrics)
496
regist_metrics("TSM", Kinetics400Metrics)
D
dengkaipeng 已提交
497
regist_metrics("TSN", Kinetics400Metrics)
498
regist_metrics("STNET", Kinetics400Metrics)
499
regist_metrics("CTCN", DetectionMetrics)
500 501 502
regist_metrics("BMN", BmnMetrics)
regist_metrics("BSNTEM", BsnTemMetrics)
regist_metrics("BSNPEM", BsnPemMetrics)
H
huangjun12 已提交
503
regist_metrics("ETS", ETSMetrics)