train.py 17.3 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import math
24
import contextlib
25
from distutils.dir_util import mkpath
P
phlrain 已提交
26 27
import paddle
import paddle.fluid as fluid
28
from paddle.fluid import profiler
P
phlrain 已提交
29
import paddle.fluid.framework as framework
30
import paddle.fluid.profiler as profiler
P
phlrain 已提交
31 32 33 34 35 36 37 38
from paddle.fluid.executor import Executor

import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
39
sys.path.append('../')
P
phlrain 已提交
40 41 42 43
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

from args import *
44
from models.model_check import check_cuda, check_version
Y
Yibing Liu 已提交
45
from models.language_model import lm_model
46
from config import RNNConfig
P
phlrain 已提交
47 48 49 50 51 52
import logging
import pickle

SEED = 123


53
@contextlib.contextmanager
54
def profile_context(profile=True, profiler_path='/tmp/paddingrnn.profile'):
55
    if profile:
56
        with profiler.profiler('All', 'total', profiler_path):
57 58 59 60 61
            yield
    else:
        yield


P
phlrain 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
def get_current_model_para(train_prog, train_exe):
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    return vals


def save_para_npz(train_prog, train_exe):
    print("begin to save model to model_base")
    param_list = train_prog.block(0).all_parameters()
    param_name_list = [p.name for p in param_list]

    vals = {}
    for p_name in param_name_list:
        p_array = np.array(fluid.global_scope().find_var(p_name).get_tensor())
        vals[p_name] = p_array

    emb = vals["embedding_para"]
    print("begin to save model to model_base")
    np.savez("mode_base", **vals)


89
def main():
P
phlrain 已提交
90
    args = parse_args()
91

92
    # check if set use_gpu=True in paddlepaddle cpu version
93
    check_cuda(args.use_gpu)
94 95
    # check if paddlepaddle version is satisfied
    check_version()
96

P
phlrain 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    logger = logging.getLogger("lm")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    logger.info('Running with args : {}'.format(args))

113 114
    config = RNNConfig(args)

115 116 117
    if not os.path.exists(args.save_model_dir):
        mkpath(args.save_model_dir)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    # define train program
    main_program = fluid.Program()
    startup_program = fluid.Program()
    if args.enable_ce:
        startup_program.random_seed = SEED
    with fluid.program_guard(main_program, startup_program):
        with fluid.unique_name.guard():
            res_vars = lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
133
                use_dataloader=args.use_dataloader)
134

135 136
            if args.use_dataloader:
                dataloader = res_vars[-1]
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
                res_vars = res_vars[:-1]
            loss, last_hidden, last_cell, feed_order = res_vars

            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=config.max_grad_norm))

            learning_rate = fluid.layers.create_global_var(
                name="learning_rate",
                shape=[1],
                value=1.0,
                dtype='float32',
                persistable=True)

            optimizer = fluid.optimizer.SGD(learning_rate=learning_rate)
            optimizer.minimize(loss)

    # define inference program
    inference_program = fluid.Program()
    inference_startup_program = fluid.Program()
    with fluid.program_guard(inference_program, inference_startup_program):
        with fluid.unique_name.guard():
            lm_model.lm_model(
                config.hidden_size,
                config.vocab_size,
                num_layers=config.num_layers,
                num_steps=config.num_steps,
                init_scale=config.init_scale,
                dropout=config.dropout,
                rnn_model=config.rnn_model,
167
                use_dataloader=False)
168 169 170
    # Some op behaves differently for train and inference, we need to call
    # this clone function to ensure every op is right for inference.
    inference_program = inference_program.clone(for_test=True)
P
phlrain 已提交
171

Y
Yibing Liu 已提交
172
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
P
phlrain 已提交
173
    exe = Executor(place)
174 175
    exe.run(startup_program)

176 177 178 179 180 181 182 183 184
    if args.init_from_pretrain_model:
        if not os.path.exists(args.init_from_pretrain_model + '.pdparams'):
            print(args.init_from_pretrain_model)
            raise Warning("The pretrained params do not exist.")
            return
        fluid.load(main_program, args.init_from_pretrain_model)
        print("finish initing model from pretrained params from %s" %
              (args.init_from_pretrain_model))

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    device_count = len(fluid.cuda_places()) if args.use_gpu else len(
        fluid.cpu_places())

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = device_count
    exec_strategy.num_iteration_per_drop_scope = 100

    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = True

    if args.parallel:
        train_program = fluid.compiler.CompiledProgram(
            main_program).with_data_parallel(
                loss_name=loss.name,
                build_strategy=build_strategy,
                exec_strategy=exec_strategy)
    else:
        train_program = fluid.compiler.CompiledProgram(main_program)
P
phlrain 已提交
203 204 205

    data_path = args.data_path
    print("begin to load data")
H
Hongyu Liu 已提交
206
    ptb_data = reader.get_ptb_data(data_path)
P
phlrain 已提交
207
    print("finished load data")
H
Hongyu Liu 已提交
208
    train_data, valid_data, test_data = ptb_data
P
phlrain 已提交
209

210
    def generate_init_data():
211
        batch_size = config.batch_size * device_count
212
        init_hidden = np.zeros(
213
            (batch_size, config.num_layers, config.hidden_size),
214 215
            dtype='float32')
        init_cell = np.zeros(
216
            (batch_size, config.num_layers, config.hidden_size),
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            dtype='float32')
        return init_hidden, init_cell

    def generate_new_lr(epoch_id=0, device_count=1):
        new_lr = config.base_learning_rate * (config.lr_decay**max(
            epoch_id + 1 - config.epoch_start_decay, 0.0))
        lr = np.ones((device_count), dtype='float32') * new_lr
        return lr

    def prepare_input(batch,
                      init_hidden=None,
                      init_cell=None,
                      epoch_id=0,
                      with_lr=True,
                      device_count=1):
P
phlrain 已提交
232
        x, y = batch
233
        x = x.reshape((-1, config.num_steps, 1))
P
phlrain 已提交
234 235
        y = y.reshape((-1, 1))

236
        res = {}
P
phlrain 已提交
237 238
        res['x'] = x
        res['y'] = y
239 240 241 242
        if init_hidden is not None:
            res['init_hidden'] = init_hidden
        if init_cell is not None:
            res['init_cell'] = init_cell
P
phlrain 已提交
243
        if with_lr:
244
            res['learning_rate'] = generate_new_lr(epoch_id, device_count)
P
phlrain 已提交
245 246 247 248 249

        return res

    def eval(data):
        # when eval the batch_size set to 1
250 251
        eval_data_iter = reader.get_data_iter(data, config.batch_size *
                                              device_count, config.num_steps)
P
phlrain 已提交
252 253
        total_loss = 0.0
        iters = 0
254
        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
255 256
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed = prepare_input(
257
                batch, init_hidden, init_cell, epoch_id=0, with_lr=False)
P
phlrain 已提交
258
            fetch_outs = exe.run(
259
                program=inference_program,
P
phlrain 已提交
260
                feed=input_data_feed,
L
liuhongyu 已提交
261
                fetch_list=[loss.name, last_hidden.name, last_cell.name],
H
Hongyu Liu 已提交
262
                use_program_cache=False)
P
phlrain 已提交
263

264
            cost_eval = np.array(fetch_outs[0])
P
phlrain 已提交
265 266 267
            init_hidden = np.array(fetch_outs[1])
            init_cell = np.array(fetch_outs[2])

268 269
            total_loss += cost_eval
            iters += config.num_steps
P
phlrain 已提交
270 271 272 273

        ppl = np.exp(total_loss / iters)
        return ppl

274 275 276 277 278
    def get_log_interval(data_len):
        num_batchs = data_len // config.batch_size
        epoch_size = (num_batchs - 1) // config.num_steps
        log_interval = max(1, epoch_size // 10)
        return log_interval
P
phlrain 已提交
279

280 281 282
    def train_an_epoch(epoch_id, batch_times):
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
283 284
        train_data_iter = reader.get_data_iter(train_data, config.batch_size *
                                               device_count, config.num_steps)
P
phlrain 已提交
285 286 287

        total_loss = 0
        iters = 0
H
Hongyu Liu 已提交
288 289

        init_hidden, init_cell = generate_init_data()
P
phlrain 已提交
290 291
        for batch_id, batch in enumerate(train_data_iter):
            input_data_feed = prepare_input(
292 293 294 295 296 297 298 299 300
                batch,
                init_hidden=init_hidden,
                init_cell=init_cell,
                epoch_id=epoch_id,
                with_lr=True,
                device_count=device_count)
            batch_start_time = time.time()
            fetch_outs = exe.run(train_program,
                                 feed=input_data_feed,
301 302 303 304
                                 fetch_list=[
                                     loss.name, "learning_rate",
                                     last_hidden.name, last_cell.name
                                 ],
P
phlrain 已提交
305
                                 use_program_cache=True)
306 307
            batch_time = time.time() - batch_start_time
            batch_times.append(batch_time)
P
phlrain 已提交
308 309

            cost_train = np.array(fetch_outs[0])
310
            lr = np.array(fetch_outs[1])
H
Hongyu Liu 已提交
311 312
            init_hidden = np.array(fetch_outs[2])
            init_cell = np.array(fetch_outs[3])
P
phlrain 已提交
313
            total_loss += cost_train
314
            iters += config.num_steps
P
phlrain 已提交
315 316
            if batch_id > 0 and batch_id % log_interval == 0:
                ppl = np.exp(total_loss / iters)
317 318 319
                print(
                    "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                    % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))
L
Li Fuchen 已提交
320

321 322 323 324 325
            # profiler tools for benchmark
            if args.profile and batch_id == log_interval:
                profiler.reset_profiler()
            elif args.profile and batch_id == (log_interval + 5):
                break
P
phlrain 已提交
326
        ppl = np.exp(total_loss / iters)
327
        return ppl
P
phlrain 已提交
328

329
    def train_an_epoch_dataloader(epoch_id, batch_times):
330 331
        # get train epoch size
        log_interval = get_log_interval(len(train_data))
P
phlrain 已提交
332

333
        init_hidden, init_cell = generate_init_data()
Z
zhengya01 已提交
334

335 336 337
        total_loss = 0
        iters = 0

338
        dataloader.start()
339 340 341 342 343 344 345 346 347 348 349 350 351 352
        batch_id = 0
        try:
            while True:
                data_feeds = {}
                if batch_id == 0:
                    batch_time = 0
                    batch_start_time = time.time()
                else:
                    batch_time = time.time() - batch_start_time
                    batch_times.append(batch_time)
                    batch_start_time = time.time()

                new_lr = generate_new_lr(epoch_id, device_count)
                data_feeds['learning_rate'] = new_lr
H
Hongyu Liu 已提交
353 354
                data_feeds["init_hidden"] = init_hidden
                data_feeds["init_cell"] = init_cell
355 356 357

                fetch_outs = exe.run(train_program,
                                     feed=data_feeds,
358 359 360 361
                                     fetch_list=[
                                         loss.name, "learning_rate",
                                         last_hidden.name, last_cell.name
                                     ],
362 363 364 365
                                     use_program_cache=True)

                cost_train = np.array(fetch_outs[0])
                lr = np.array(fetch_outs[1])
366 367
                init_hidden = np.array(fetch_outs[2])
                init_cell = np.array(fetch_outs[3])
368 369 370 371 372 373 374 375 376 377 378

                total_loss += cost_train
                iters += config.num_steps
                if batch_id > 0 and (log_interval == 0 or
                                     batch_id % log_interval == 0):
                    ppl = np.exp(total_loss / iters)
                    print(
                        "-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f, lr: %.5f"
                        % (epoch_id, batch_id, batch_time, ppl[0], lr[0]))

                batch_id += 1
379 380 381 382 383
                # profiler tools for benchmark
                if args.profile and batch_id == log_interval:
                    profiler.reset_profiler()
                elif args.profile and batch_id == (log_interval + 5):
                    break
384
        except fluid.core.EOFException:
385
            dataloader.reset()
386 387 388 389 390 391

        batch_times.append(time.time() - batch_start_time)
        ppl = np.exp(total_loss / iters)
        return ppl

    def train():
392
        if args.use_dataloader:
393 394

            def data_gen():
395
                data_iter_size = config.batch_size
396 397 398 399 400 401 402 403
                train_batches = reader.get_data_iter(train_data, data_iter_size,
                                                     config.num_steps)
                for batch in train_batches:
                    x, y = batch
                    x = x.reshape((-1, config.num_steps, 1))
                    y = y.reshape((-1, 1))
                    yield x, y

404
            dataloader.set_batch_generator(data_gen)
405 406 407 408 409

        total_time = 0.0
        for epoch_id in range(config.max_epoch):
            batch_times = []
            epoch_start_time = time.time()
410 411
            if args.use_dataloader:
                train_ppl = train_an_epoch_dataloader(epoch_id, batch_times)
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
            else:
                train_ppl = train_an_epoch(epoch_id, batch_times)
            epoch_time = time.time() - epoch_start_time
            total_time += epoch_time
            print(
                "\nTrain epoch:[%d]; epoch Time: %.5f; ppl: %.5f; avg_time: %.5f steps/s \n"
                % (epoch_id, epoch_time, train_ppl[0],
                   len(batch_times) / sum(batch_times)))

            # FIXME(zjl): ppl[0] increases as batch_size increases. 
            # We should find a better way to calculate ppl by normalizing batch_size. 
            if device_count == 1 and config.batch_size <= 20 and epoch_id == 0 and train_ppl[
                    0] > 1000:
                # for bad init, after first epoch, the loss is over 1000
                # no more need to continue
                print(
                    "Parameters are randomly initialized and not good this time because the loss is over 1000 after the first epoch."
                )
                print("Abort this training process and please start again.")
                return

            if epoch_id == config.max_epoch - 1 and args.enable_ce:
                # kpis
                print("ptblm\tlstm_language_model_%s_duration_card%d\t%s" %
                      (args.rnn_model, device_count,
                       total_time / config.max_epoch))
                print("ptblm\tlstm_language_model_%s_loss_card%d\t%s" %
                      (args.rnn_model, device_count, train_ppl[0]))

            # NOTE(zjl): sometimes we have not enough data for eval if batch_size is large, i.e., 2100
            # Just skip to avoid error
            def is_valid_data(data, batch_size, num_steps):
                data_len = len(data)
                batch_len = data_len // batch_size
                epoch_size = (batch_len - 1) // num_steps
                return epoch_size >= 1

            valid_data_valid = is_valid_data(valid_data, config.batch_size,
                                             config.num_steps)
            if valid_data_valid:
                valid_ppl = eval(valid_data)
                print("Valid ppl: %.5f" % valid_ppl[0])
            else:
                print(
                    'WARNING: length of valid_data is {}, which is not enough for batch_size {} and num_steps {}'.
                    format(
                        len(valid_data), config.batch_size, config.num_steps))

460 461 462 463 464
            save_model_dir = os.path.join(args.save_model_dir, str(epoch_id))
            if not os.path.exists(save_model_dir):
                mkpath(save_model_dir)
            save_model_dir = os.path.join(save_model_dir, 'params')

465
            fluid.save(main_program, save_model_dir)
466
            print("Saved model to: %s.\n" % save_model_dir)
Z
zhengya01 已提交
467

468
    with profile_context(args.profile, args.profiler_path):
469 470
        train()

471 472 473 474 475 476
    test_ppl = eval(test_data)
    print("Test ppl:", test_ppl[0])


if __name__ == '__main__':
    main()