train.py 28.5 KB
Newer Older
1 2
import argparse
import ast
G
guosheng 已提交
3 4
import copy
import logging
5
import multiprocessing
Y
Yu Yang 已提交
6
import os
G
guosheng 已提交
7
import six
G
guosheng 已提交
8
import sys
Y
Yu Yang 已提交
9
import time
Y
ying 已提交
10

Y
Yu Yang 已提交
11
import numpy as np
L
Luo Tao 已提交
12
import paddle.fluid as fluid
G
guosheng 已提交
13
from paddle.fluid.transpiler.details import program_to_code
Y
ying 已提交
14

Y
Yu Yang 已提交
15 16
import reader
from config import *
17
from model import transformer, position_encoding_init
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--train_file_pattern",
        type=str,
        required=True,
        help="The pattern to match training data files.")
    parser.add_argument(
        "--val_file_pattern",
        type=str,
        help="The pattern to match validation data files.")
    parser.add_argument(
        "--use_token_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to "
        "produce batch data according to token number.")
    parser.add_argument(
        "--batch_size",
        type=int,
50
        default=4096,
51
        help="The number of sequences contained in a mini-batch, or the maximum "
52 53 54
        "number of tokens (include paddings) contained in a mini-batch. Note "
        "that this represents the number on single device and the actual batch "
        "size for multi-devices will multiply the device number.")
55 56 57
    parser.add_argument(
        "--pool_size",
        type=int,
58
        default=200000,
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
        help="The buffer size to pool data.")
    parser.add_argument(
        "--sort_type",
        default="pool",
        choices=("global", "pool", "none"),
        help="The grain to sort by length: global for all instances; pool for "
        "instances in pool; none for no sort.")
    parser.add_argument(
        "--shuffle",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle instances in each pass.")
    parser.add_argument(
        "--shuffle_batch",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to shuffle the data batches.")
    parser.add_argument(
        "--special_token",
        type=str,
        default=["<s>", "<e>", "<unk>"],
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
82 83
    parser.add_argument(
        "--token_delimiter",
G
guosheng 已提交
84
        type=lambda x: str(x.encode().decode("unicode-escape")),
85 86
        default=" ",
        help="The delimiter used to split tokens in source or target sentences. "
87
        "For EN-DE BPE data we provided, use spaces as token delimiter. ")
88 89 90 91 92
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
93 94 95 96 97 98 99 100 101 102 103
    parser.add_argument(
        '--local',
        type=ast.literal_eval,
        default=True,
        help='Whether to run as local mode.')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help="The device type.")
G
fix  
gongweibao 已提交
104 105 106 107 108
    parser.add_argument(
        '--update_method',
        choices=("pserver", "nccl2"),
        default="pserver",
        help='Update method.')
Q
Qiao Longfei 已提交
109 110
    parser.add_argument(
        '--sync', type=ast.literal_eval, default=True, help="sync mode.")
G
guosheng 已提交
111 112 113
    parser.add_argument(
        "--enable_ce",
        type=ast.literal_eval,
114
        default=False,
G
guosheng 已提交
115 116
        help="The flag indicating whether to run the task "
        "for continuous evaluation.")
117 118 119
    parser.add_argument(
        "--use_mem_opt",
        type=ast.literal_eval,
G
guosheng 已提交
120
        default=True,
121 122 123 124 125 126
        help="The flag indicating whether to use memory optimization.")
    parser.add_argument(
        "--use_py_reader",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to use py_reader.")
G
fix  
gongweibao 已提交
127
    parser.add_argument(
G
guosheng 已提交
128 129 130 131
        "--fetch_steps",
        type=int,
        default=100,
        help="The frequency to fetch and print output.")
G
fix  
gongweibao 已提交
132

133
    args = parser.parse_args()
134 135 136 137 138 139 140 141 142 143 144
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
        "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [TrainTaskConfig, ModelHyperParams])
145
    return args
146 147


G
guosheng 已提交
148 149
def append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                         current_endpoint):
150 151
    assert (trainer_id >= 0 and len(worker_endpoints) > 1 and
            current_endpoint in worker_endpoints)
G
fix  
gongweibao 已提交
152 153
    eps = copy.deepcopy(worker_endpoints)
    eps.remove(current_endpoint)
G
guosheng 已提交
154
    nccl_id_var = startup_prog.global_block().create_var(
155
        name="NCCLID", persistable=True, type=fluid.core.VarDesc.VarType.RAW)
G
guosheng 已提交
156
    startup_prog.global_block().append_op(
G
fix  
gongweibao 已提交
157 158 159 160 161 162 163 164 165
        type="gen_nccl_id",
        inputs={},
        outputs={"NCCLID": nccl_id_var},
        attrs={
            "endpoint": current_endpoint,
            "endpoint_list": eps,
            "trainer_id": trainer_id
        })
    return nccl_id_var
166

167

168 169 170 171
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
172
                   is_label=False,
173
                   return_attn_bias=True,
174 175
                   return_max_len=True,
                   return_num_token=False):
176 177
    """
    Pad the instances to the max sequence length in batch, and generate the
178 179 180 181
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
G
guosheng 已提交
182 183 184 185
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
186
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
187 188 189 190 191 192
    if is_label:  # label weight
        inst_weight = np.array(
            [[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
193
            list(range(0, len(inst))) + [0] * (max_len - len(inst))
194 195
            for inst in insts
        ])
196 197 198 199 200 201
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
202 203
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
204 205 206 207 208 209 210 211 212 213 214 215 216
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
217
    if return_num_token:
G
guosheng 已提交
218 219 220
        num_token = 0
        for inst in insts:
            num_token += len(inst)
221
        return_list += [num_token]
222 223 224
    return return_list if len(return_list) > 1 else return_list[0]


225 226
def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
                        n_head, d_model):
227 228
    """
    Put all padded data needed by training into a dict.
229
    """
230
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
G
guosheng 已提交
231
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
232 233
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
234
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
G
guosheng 已提交
235
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
236 237 238
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)

239 240
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
241

242
    lbl_word, lbl_weight, num_token = pad_batch_data(
243 244 245 246 247 248
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
249 250 251 252 253 254 255
        return_max_len=False,
        return_num_token=True)

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
            trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
256
        ]))
257

258
    return data_input_dict, np.asarray([num_token], dtype="float32")
259 260


261
def prepare_data_generator(args, is_test, count, pyreader):
Q
Qiao Longfei 已提交
262
    """
263 264
    Data generator wrapper for DataReader. If use py_reader, set the data
    provider for py_reader
Q
Qiao Longfei 已提交
265
    """
266 267
    data_reader = reader.DataReader(
        fpattern=args.val_file_pattern if is_test else args.train_file_pattern,
Q
Qiao Longfei 已提交
268 269
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
270
        token_delimiter=args.token_delimiter,
Q
Qiao Longfei 已提交
271
        use_token_batch=args.use_token_batch,
272
        batch_size=args.batch_size * (1 if args.use_token_batch else count),
Q
Qiao Longfei 已提交
273 274
        pool_size=args.pool_size,
        sort_type=args.sort_type,
275 276
        shuffle=args.shuffle,
        shuffle_batch=args.shuffle_batch,
Q
Qiao Longfei 已提交
277 278 279 280 281
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        clip_last_batch=False).batch_generator

    def stack(data_reader, count, clip_last=True):
        def __impl__():
            res = []
            for item in data_reader():
                res.append(item)
                if len(res) == count:
                    yield res
                    res = []
            if len(res) == count:
                yield res
            elif not clip_last:
                data = []
                for item in res:
                    data += item
                if len(data) > count:
                    inst_num_per_part = len(data) // count
                    yield [
                        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                        for i in range(count)
                    ]

        return __impl__

    def split(data_reader, count):
        def __impl__():
            for item in data_reader():
                inst_num_per_part = len(item) // count
                for i in range(count):
                    yield item[inst_num_per_part * i:inst_num_per_part * (i + 1
                                                                          )]

        return __impl__

    if not args.use_token_batch:
        # to make data on each device have similar token number
        data_reader = split(data_reader, count)
    if args.use_py_reader:
        pyreader.decorate_tensor_provider(
            py_reader_provider_wrapper(data_reader))
        data_reader = None
    else:  # Data generator for multi-devices
        data_reader = stack(data_reader, count)
    return data_reader


def prepare_feed_dict_list(data_generator, init_flag, count):
    """
    Prepare the list of feed dict for multi-devices.
    """
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            data_input_dict, num_token = prepare_batch_input(
                data_buffer, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
            feed_dict_list.append(data_input_dict)
    if init_flag:
        for idx in range(count):
            pos_enc_tables = dict()
            for pos_enc_param_name in pos_enc_param_names:
                pos_enc_tables[pos_enc_param_name] = position_encoding_init(
                    ModelHyperParams.max_length + 1, ModelHyperParams.d_model)
            if len(feed_dict_list) <= idx:
                feed_dict_list.append(pos_enc_tables)
            else:
                feed_dict_list[idx] = dict(
                    list(pos_enc_tables.items()) + list(feed_dict_list[idx]
                                                        .items()))

    return feed_dict_list if len(feed_dict_list) == count else None


def py_reader_provider_wrapper(data_reader):
    """
    Data provider needed by fluid.layers.py_reader.
    """
Q
Qiao Longfei 已提交
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    def py_reader_provider():
        data_input_names = encoder_data_input_fields + \
                    decoder_data_input_fields[:-1] + label_data_input_fields
        for batch_id, data in enumerate(data_reader()):
            data_input_dict, num_token = prepare_batch_input(
                data, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.eos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
            total_dict = dict(data_input_dict.items())
            yield [total_dict[item] for item in data_input_names]

    return py_reader_provider


def test_context(exe, train_exe, dev_count):
    # Context to do validation.
    test_prog = fluid.Program()
G
guosheng 已提交
382 383 384 385
    startup_prog = fluid.Program()
    if args.enable_ce:
        test_prog.random_seed = 1000
        startup_prog.random_seed = 1000
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=args.use_py_reader,
                is_test=True)
G
guosheng 已提交
407
    test_prog = test_prog.clone(for_test=True)
408 409 410 411
    test_data = prepare_data_generator(
        args, is_test=True, count=dev_count, pyreader=pyreader)

    exe.run(startup_prog)
Q
Qiao Longfei 已提交
412 413
    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
414
        main_program=test_prog,
Q
Qiao Longfei 已提交
415 416
        share_vars_from=train_exe)

417
    def test(exe=test_exe, pyreader=pyreader):
Q
Qiao Longfei 已提交
418 419
        test_total_cost = 0
        test_total_token = 0
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = test_data()
        while True:
            try:
                feed_dict_list = prepare_feed_dict_list(data_generator, False,
                                                        dev_count)
                outs = test_exe.run(fetch_list=[sum_cost.name, token_num.name],
                                    feed=feed_dict_list)
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
Q
Qiao Longfei 已提交
437 438 439 440 441 442 443 444 445 446
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


447 448 449 450 451 452 453 454 455 456 457
def train_loop(exe,
               train_prog,
               startup_prog,
               dev_count,
               sum_cost,
               avg_cost,
               token_num,
               predict,
               pyreader,
               nccl2_num_trainers=1,
               nccl2_trainer_id=0):
Q
Qiao Longfei 已提交
458 459 460 461
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
        fluid.io.load_persistables(exe, TrainTaskConfig.ckpt_path)
    else:
G
fix  
gongweibao 已提交
462
        logging.info("init fluid.framework.default_startup_program")
463
        exe.run(startup_prog)
Q
Qiao Longfei 已提交
464

G
fix  
gongweibao 已提交
465
    logging.info("begin reader")
466 467
    train_data = prepare_data_generator(
        args, is_test=False, count=dev_count, pyreader=pyreader)
Q
Qiao Longfei 已提交
468

469 470 471 472
    # For faster executor
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.use_experimental_executor = True
    # exec_strategy.num_iteration_per_drop_scope = 5
Q
Qiao Longfei 已提交
473 474 475 476
    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
G
guosheng 已提交
477
    # build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
G
fix  
gongweibao 已提交
478

G
fix  
gongweibao 已提交
479
    logging.info("begin executor")
Q
Qiao Longfei 已提交
480 481
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
482 483 484
        loss_name=avg_cost.name,
        main_program=train_prog,
        build_strategy=build_strategy,
G
fix  
gongweibao 已提交
485
        exec_strategy=exec_strategy,
486 487
        num_trainers=nccl2_num_trainers,
        trainer_id=nccl2_trainer_id)
Q
Qiao Longfei 已提交
488 489

    if args.val_file_pattern is not None:
490
        test = test_context(exe, train_exe, dev_count)
Q
Qiao Longfei 已提交
491

G
guosheng 已提交
492 493 494 495 496 497
    # the best cross-entropy value with label smoothing
    loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
        (1. - TrainTaskConfig.label_smooth_eps
         )) + TrainTaskConfig.label_smooth_eps *
                        np.log(TrainTaskConfig.label_smooth_eps / (
                            ModelHyperParams.trg_vocab_size - 1) + 1e-20))
G
guosheng 已提交
498 499

    step_idx = 0
500
    init_flag = True
G
fix  
gongweibao 已提交
501 502

    logging.info("begin train")
G
guosheng 已提交
503
    for pass_id in six.moves.xrange(TrainTaskConfig.pass_num):
Q
Qiao Longfei 已提交
504
        pass_start_time = time.time()
505 506 507 508 509 510 511 512 513 514 515 516 517

        if args.use_py_reader:
            pyreader.start()
            data_generator = None
        else:
            data_generator = train_data()

        batch_id = 0
        while True:
            try:
                feed_dict_list = prepare_feed_dict_list(data_generator,
                                                        init_flag, dev_count)
                outs = train_exe.run(
518
                    fetch_list=[sum_cost.name, token_num.name]
G
guosheng 已提交
519
                    if step_idx % args.fetch_steps == 0 else [],
520
                    feed=feed_dict_list)
521

G
guosheng 已提交
522
                if step_idx % args.fetch_steps == 0:
523 524
                    sum_cost_val, token_num_val = np.array(outs[0]), np.array(
                        outs[1])
G
fix  
gongweibao 已提交
525 526 527 528 529
                    # sum the cost from multi-devices
                    total_sum_cost = sum_cost_val.sum()
                    total_token_num = token_num_val.sum()
                    total_avg_cost = total_sum_cost / total_token_num

G
guosheng 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f, speed: %.2f step/s" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)]),
                             args.fetch_steps / (time.time() - avg_batch_time)))
                        avg_batch_time = time.time()

                if step_idx % TrainTaskConfig.save_freq == 0 and step_idx > 0:
549 550 551 552 553 554 555 556 557
                    fluid.io.save_persistables(
                        exe,
                        os.path.join(TrainTaskConfig.ckpt_dir,
                                     "latest.checkpoint"), train_prog)
                    fluid.io.save_params(
                        exe,
                        os.path.join(TrainTaskConfig.model_dir,
                                     "iter_" + str(step_idx) + ".infer.model"),
                        train_prog)
G
guosheng 已提交
558

559 560 561 562 563 564 565 566
                init_flag = False
                batch_id += 1
                step_idx += 1
            except (StopIteration, fluid.core.EOFException):
                # The current pass is over.
                if args.use_py_reader:
                    pyreader.reset()
                break
G
guosheng 已提交
567 568

        time_consumed = time.time() - pass_start_time
569
        # Validate and save the persistable.
G
guosheng 已提交
570 571
        if args.val_file_pattern is not None:
            val_avg_cost, val_ppl = test()
G
fix  
gongweibao 已提交
572
            logging.info(
G
guosheng 已提交
573 574 575 576 577
                "epoch: %d, val avg loss: %f, val normalized loss: %f, val ppl: %f,"
                " consumed %fs" % (pass_id, val_avg_cost,
                                   val_avg_cost - loss_normalizer, val_ppl,
                                   time_consumed))
        else:
G
fix  
gongweibao 已提交
578
            logging.info("epoch: %d, consumed %fs" % (pass_id, time_consumed))
G
guosheng 已提交
579 580 581 582 583 584
        if not args.enable_ce:
            fluid.io.save_persistables(
                exe,
                os.path.join(TrainTaskConfig.ckpt_dir,
                             "pass_" + str(pass_id) + ".checkpoint"),
                train_prog)
585

G
guosheng 已提交
586
    if args.enable_ce:  # For CE
587
        print("kpis\ttrain_cost_card%d\t%f" % (dev_count, total_avg_cost))
588 589
        if args.val_file_pattern is not None:
            print("kpis\ttest_cost_card%d\t%f" % (dev_count, val_avg_cost))
590
        print("kpis\ttrain_duration_card%d\t%f" % (dev_count, time_consumed))
Q
Qiao Longfei 已提交
591 592


593 594 595 596 597
def train(args):
    # priority: ENV > args > config
    is_local = os.getenv("PADDLE_IS_LOCAL", "1")
    if is_local == '0':
        args.local = False
G
fix  
gongweibao 已提交
598
    logging.info(args)
599

600 601
    if args.device == 'CPU':
        TrainTaskConfig.use_gpu = False
G
guosheng 已提交
602

603
    training_role = os.getenv("TRAINING_ROLE", "TRAINER")
G
guosheng 已提交
604

605 606 607 608 609 610 611 612
    if training_role == "PSERVER" or (not TrainTaskConfig.use_gpu):
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    else:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()

    exe = fluid.Executor(place)
613

614 615
    train_prog = fluid.Program()
    startup_prog = fluid.Program()
G
guosheng 已提交
616

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    if args.enable_ce:
        train_prog.random_seed = 1000
        startup_prog.random_seed = 1000

    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                use_py_reader=args.use_py_reader,
                is_test=False)
642

643
            optimizer = None
G
fix bug  
gongweibao 已提交
644
            if args.sync:
645 646
                lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
                    ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
647
                logging.info("before adam")
G
fix  
gongweibao 已提交
648 649 650 651

                with fluid.default_main_program()._lr_schedule_guard():
                    learning_rate = lr_decay * TrainTaskConfig.learning_rate

652
                optimizer = fluid.optimizer.Adam(
G
fix  
gongweibao 已提交
653
                    learning_rate=learning_rate,
654 655 656
                    beta1=TrainTaskConfig.beta1,
                    beta2=TrainTaskConfig.beta2,
                    epsilon=TrainTaskConfig.eps)
G
fix bug  
gongweibao 已提交
657
            else:
658 659 660 661 662
                optimizer = fluid.optimizer.SGD(0.003)
            optimizer.minimize(avg_cost)

    if args.use_mem_opt:
        fluid.memory_optimize(train_prog)
663 664

    if args.local:
665
        logging.info("local start_up:")
666 667
        train_loop(exe, train_prog, startup_prog, dev_count, sum_cost, avg_cost,
                   token_num, predict, pyreader)
668
    else:
G
fix  
gongweibao 已提交
669 670 671 672 673 674 675 676 677 678 679 680
        if args.update_method == "nccl2":
            trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
            port = os.getenv("PADDLE_PORT")
            worker_ips = os.getenv("PADDLE_TRAINERS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            trainers_num = len(worker_endpoints)
            current_endpoint = os.getenv("POD_IP") + ":" + port
            if trainer_id == 0:
                logging.info("train_id == 0, sleep 60s")
                time.sleep(60)
681 682 683
            logging.info("trainers_num:{}".format(trainers_num))
            logging.info("worker_endpoints:{}".format(worker_endpoints))
            logging.info("current_endpoint:{}".format(current_endpoint))
G
guosheng 已提交
684 685 686 687 688
            append_nccl2_prepare(startup_prog, trainer_id, worker_endpoints,
                                 current_endpoint)
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader, trainers_num,
                       trainer_id)
G
fix  
gongweibao 已提交
689 690
            return

691 692 693 694 695 696 697 698 699
        port = os.getenv("PADDLE_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
        trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
        current_endpoint = os.getenv("POD_IP") + ":" + port
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
G
fix  
gongweibao 已提交
700

701 702 703 704 705
        logging.info("pserver_endpoints:{}".format(pserver_endpoints))
        logging.info("current_endpoint:{}".format(current_endpoint))
        logging.info("trainer_id:{}".format(trainer_id))
        logging.info("pserver_ips:{}".format(pserver_ips))
        logging.info("port:{}".format(port))
G
fix  
gongweibao 已提交
706

707
        t = fluid.DistributeTranspiler()
708 709 710 711 712 713
        t.transpile(
            trainer_id,
            pservers=pserver_endpoints,
            trainers=trainers,
            program=train_prog,
            startup_program=startup_prog)
714 715

        if training_role == "PSERVER":
G
fix bug  
gongweibao 已提交
716
            logging.info("distributed: pserver started")
717 718 719
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_PORT")
            if not current_endpoint:
720
                logging.critical("need env SERVER_ENDPOINT")
721 722 723 724 725 726 727 728
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)

            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
G
fix bug  
gongweibao 已提交
729
            logging.info("distributed: trainer started")
730
            trainer_prog = t.get_trainer_program()
G
fix  
gongweibao 已提交
731

732 733
            train_loop(exe, train_prog, startup_prog, dev_count, sum_cost,
                       avg_cost, token_num, predict, pyreader)
734
        else:
735 736
            logging.critical(
                "environment var TRAINER_ROLE should be TRAINER os PSERVER")
G
fix  
gongweibao 已提交
737
            exit(1)
738 739 740


if __name__ == "__main__":
G
fix  
gongweibao 已提交
741
    LOG_FORMAT = "[%(asctime)s %(levelname)s %(filename)s:%(lineno)d] %(message)s"
742 743
    logging.basicConfig(
        stream=sys.stdout, level=logging.DEBUG, format=LOG_FORMAT)
G
fix  
gongweibao 已提交
744

745 746
    args = parse_args()
    train(args)