deepvoice3.py 58.6 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from itertools import chain
from collections import namedtuple

from paddle import fluid
import paddle.fluid.dygraph as dg

import numpy as np

from deepvoice3_paddle import conv

from deepvoice3_paddle.modules import Embedding, PositionEmbedding
from deepvoice3_paddle.modules import FC, Conv1D, Conv1DGLU, Conv1DTranspose

ConvSpec = namedtuple("ConvSpec", ["out_channels", "filter_size", "dilation"])
WindowRange = namedtuple("WindowRange", ["backward", "ahead"])


def expand_speaker_embed(x, speaker_embed, tdim=-1):
    """
    Expand speaker embeddings for multiple timesteps.
    
    Args:
        x (Variable): A reference Variable used to determine number of timesteps.
        speaker_embed (Variable): Shape(B, C), embeddings of speakers, where
            B means batch_size, C means speaker embedding size.
        tdim (int, optional): The idex of time dimension in x. Defaults to -1,
            which means the last dimension is time dimension.
    
    Returns:
        Variable: Shape(B, C, 1, T), the expanded speaker embeddings, where
            T = x.shape[tdim]. T means number of timesteps.
    
    """

    speaker_embed = fluid.layers.reshape(
        speaker_embed, shape=speaker_embed.shape + [1, 1])
    time_steps = x.shape[tdim]
    speaker_embed_bc1t = fluid.layers.expand(
        speaker_embed, expand_times=[1, 1, 1, time_steps])
    return speaker_embed_bc1t


def gen_mask2(valid_lengths, max_len, dtype="float32"):
    """
    Generate a mask tensor from valid lengths. note that it return a *reverse*
    mask. Indices within valid lengths correspond to 0, and those within
    padding area correspond to 1. 
    
    Assume that valid_lengths = [2,5,7], and max_len = 7, the generated mask is
    [[0, 0, 1, 1, 1, 1, 1],
     [0, 0, 0, 0, 0, 1, 1],
     [0, 0, 0, 0, 0, 0, 0]].

    Args:
        valid_lengths (Variable): Shape(B), dtype: int64. A 1D-Tensor containing
            the valid lengths (timesteps) of each example, where B means
            beatch_size.
        max_len (int): The length (number of timesteps) of the mask.
        dtype (str, optional): A string that specifies the data type of the
            returned mask.

    Returns:
        mask (Variable): A mask computed from valid lengths.
    """
    batch_size = valid_lengths.shape[0]
    mask = fluid.layers.sequence_mask(
        valid_lengths, maxlen=max_len, dtype=dtype)
    mask = 1 - mask
    return mask


def expand_mask(mask, attn):
    """
    Expand a mask for multiple time steps. This function is used
    by the AttentionLayer in the Decoder to expand a mask for every
    timestep in the decoder.

    Args:
        mask (Variable): Shape(B, T_enc), a mask generated with valid
            text lengths, where T_enc means encoder length(time steps).
        attn (Variable): Shape(B, T_dec, T_enc), a Variable stands for 
            the alignment tensor between encoder and decoder, where 
            T_dec means the decoder length(time_steps).

    Returns:
        mask_btc (Variable): shape(B, T_dec, T_enc), the expanded mask.
    """
    decoder_length = attn.shape[1]
    mask = fluid.layers.reshape(mask, [mask.shape[0], 1, mask.shape[1]])
    mask_btc = fluid.layers.expand(mask, expand_times=[1, decoder_length, 1])
    return mask_btc


class Encoder(dg.Layer):
    def __init__(self,
                 name_scope,
                 n_vocab,
                 embed_dim,
                 n_speakers,
                 speaker_dim,
                 padding_idx=None,
                 embedding_weight_std=0.1,
                 convolutions=(ConvSpec(64, 5, 1)) * 7,
                 max_positions=512,
                 dropout=0.1,
                 dtype="float32"):
        super(Encoder, self).__init__(name_scope, dtype=dtype)

        self.dropout = dropout
        self.embedding_weight_std = embedding_weight_std

        self.embed = Embedding(
            self.full_name(),
            n_vocab,
            embed_dim,
            padding_idx=padding_idx,
            std=embedding_weight_std,
            dtype=dtype)

        if n_speakers > 1:
            self.sp_proj1 = Conv1D(
                self.full_name(),
                speaker_dim,
                embed_dim,
                filter_size=1,
                std_mul=1.0,
                dropout=dropout,
                act="softsign",
                dtype=dtype)
            self.sp_proj2 = Conv1D(
                self.full_name(),
                speaker_dim,
                embed_dim,
                filter_size=1,
                std_mul=1.0,
                dropout=dropout,
                act="softsign",
                dtype=dtype)
        self.n_speakers = n_speakers

        self.convolutions = []

        in_channels = embed_dim
        std_mul = 1.0
        for (out_channels, filter_size, dilation) in convolutions:
            # 1 * 1 convolution & relu
            if in_channels != out_channels:
                self.convolutions.append(
                    Conv1D(
                        self.full_name(),
                        in_channels,
                        out_channels,
                        filter_size=1,
                        std_mul=std_mul,
                        act="relu",
                        dtype=dtype))
                in_channels = out_channels
                std_mul = 2.0

            self.convolutions.append(
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    in_channels,
                    out_channels,
                    filter_size,
                    dilation,
                    std_mul=std_mul,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype))
            in_channels = out_channels
            std_mul = 4.0

        self.convolutions.append(
            Conv1D(
                self.full_name(),
                in_channels,
                embed_dim,
                filter_size=1,
                std_mul=std_mul,
                dropout=dropout,
                dtype=dtype))

        for i, layer in enumerate(self.convolutions):
            self.add_sublayer("convolution_{}".format(i), layer)

    def forward(self, x, speaker_embed=None):
        """
        Encode text sequence.
        
        Args:
209
            x (Variable): Shape(B, T_enc), dtype: int64. Ihe input text
F
Feiyu Chan 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
                indices. T_enc means the timesteps of decoder input x.
            speaker_embed (Variable, optional): Shape(Batch_size, speaker_dim),
                dtype: float32. Speaker embeddings. This arg is not None only
                when the model is a multispeaker model.

        Returns:
            keys (Variable), Shape(B, C_emb, 1, T_enc), the encoded
                representation for keys, where C_emb menas the text embedding
                size.
            values (Variable), Shape(B, C_embed, 1, T_enc), the encoded
                representation for values.
        """
        x = self.embed(x)

        x = fluid.layers.dropout(
            x, self.dropout, dropout_implementation="upscale_in_train")
        x = fluid.layers.transpose(
            fluid.layers.reshape(
                x, shape=x.shape + [1]), perm=[0, 2, 3, 1])

        speaker_embed_bc1t = None
        if speaker_embed is not None:
            speaker_embed_bc1t = expand_speaker_embed(x, speaker_embed, tdim=3)

            speaker_embed_bc1t = fluid.layers.dropout(
                speaker_embed_bc1t,
                self.dropout,
                dropout_implementation="upscale_in_train")

            x = x + self.sp_proj1(speaker_embed_bc1t)

        input_embed = x

        for layer in self.convolutions:
            if isinstance(layer, Conv1DGLU):
                x = layer(x, speaker_embed_bc1t)
            else:
                x = layer(x)

        if speaker_embed is not None:
            x = x + self.sp_proj2(speaker_embed_bc1t)

        keys = x
        values = fluid.layers.scale(input_embed + x, scale=np.sqrt(0.5))

        return keys, values

    def freeze_embedding(self):
        """Fix text embedding while training."""
        for param in self.embed.parameters():
            param.trainable = False


class AttentionLayer(dg.Layer):
    def __init__(self,
                 name_scope,
                 conv_channels,
                 embed_dim,
                 dropout=0.0,
                 window_range=WindowRange(-1, 3),
                 key_projection=True,
                 value_projection=True,
                 dtype="float32"):
        super(AttentionLayer, self).__init__(name_scope, dtype=dtype)
        self.query_proj = Conv1D(
            self.full_name(),
            conv_channels,
            embed_dim,
            filter_size=1,
            dtype=dtype)

        if key_projection:
            self.key_proj = Conv1D(
                self.full_name(),
                embed_dim,
                embed_dim,
                filter_size=1,
                dtype=dtype)

        if value_projection:
            self.value_proj = Conv1D(
                self.full_name(),
                embed_dim,
                embed_dim,
                filter_size=1,
                dtype=dtype)

        self.out_proj = Conv1D(
            self.full_name(),
            embed_dim,
            conv_channels,
            filter_size=1,
            dtype=dtype)

        self.key_projection = key_projection
        self.value_projection = value_projection
        self.dropout = dropout
        self.window_range = window_range

    def forward(self, query, encoder_out, mask=None, last_attended=None):
        """
        Compute pooled context representation and alignment scores.
        
        Args:
            query (Variable): shape(B, C_q, 1, T_dec), the query tensor,
                where C_q means the channel of query.
            encoder_out (Tuple(Variable, Variable)): 
                keys (Variable): shape(B, C_emb, 1, T_enc), the key
                    representation from an encoder, where C_emb means
                    text embedding size.
                values (Variable): shape(B, C_emb, 1, T_enc), the value
                    representation from an encoder, where C_emb means
                    text embedding size.
            mask (Variable, optional): Shape(B, T_enc), mask generated with 
                valid text lengths.
            last_attended (int, optional): The position that received most
                attention at last timestep. This is only used at decoding.

        Outpus:
            x (Variable): Shape(B, C_q, 1, T_dec), the context representation
                pooled from attention mechanism.
            attn_scores (Variable): shape(B, T_dec, T_enc), the alignment
                tensor, where T_dec means the number of decoder time steps and 
                T_enc means number the number of decoder time steps.
        """
        keys, values = encoder_out
        residual = query
        if self.value_projection:
            values = self.value_proj(values)

        if self.key_projection:
            keys = self.key_proj(keys)

        x = self.query_proj(query)

        batch_size, conv_channels, _, decoder_length = query.shape
        encoder_length = keys.shape[-1]
        embed_dim = keys.shape[1]

        x = fluid.layers.matmul(
            fluid.layers.reshape(
                x, shape=[batch_size, embed_dim, decoder_length]),
            fluid.layers.reshape(
                keys, shape=[batch_size, embed_dim, encoder_length]),
            transpose_x=True)

        mask_value = -1.0e30
        if mask is not None:
            mask = expand_mask(mask, x)
            neg_inf_mask = fluid.layers.scale(mask, mask_value)
            x = x + neg_inf_mask

        # if last_attended is provided, focus only on a window range around it
        # to enforce monotonic attention.
        if last_attended is not None:
            locality_mask = np.ones(shape=x.shape, dtype=np.float32)
            backward, ahead = self.window_range
            backward = last_attended + backward
            ahead = last_attended + ahead
            if backward < 0:
                backward = 0
            if ahead > x.shape[-1]:
                ahead = x.shape[-1]
            locality_mask[:, :, backward:ahead] = 0.

            locality_mask = dg.to_variable(locality_mask)
            neg_inf_mask = fluid.layers.scale(locality_mask, mask_value)
            x = x + neg_inf_mask

        x = fluid.layers.softmax(x)
        attn_scores = x

        x = fluid.layers.dropout(
            x, self.dropout, dropout_implementation="upscale_in_train")

        x = fluid.layers.matmul(
            fluid.layers.reshape(
                values, shape=[batch_size, embed_dim, encoder_length]),
            x,
            transpose_y=True)

        x = fluid.layers.reshape(x, [batch_size, embed_dim, 1, decoder_length])

        x = fluid.layers.scale(x,
                               encoder_length * np.sqrt(1.0 / encoder_length))

        x = self.out_proj(x)

        x = fluid.layers.scale((x + residual), np.sqrt(0.5))
        return x, attn_scores


class Decoder(dg.Layer):
    def __init__(self,
                 name_scope,
                 n_speakers,
                 speaker_dim,
                 embed_dim,
                 mel_dim=80,
                 r=5,
                 max_positions=512,
                 padding_idx=None,
                 preattention=(ConvSpec(128, 5, 1)) * 4,
                 convolutions=(ConvSpec(128, 5, 1)) * 4,
                 attention=True,
                 dropout=0.1,
                 use_memory_mask=False,
                 force_monotonic_attention=False,
                 query_position_rate=1.0,
                 key_position_rate=1.29,
                 window_range=WindowRange(-1, 3),
                 key_projection=True,
                 value_projection=True,
                 dtype="float32"):
        super(Decoder, self).__init__(name_scope, dtype=dtype)

        self.dropout = dropout
        self.mel_dim = mel_dim
        self.r = r
        self.query_position_rate = query_position_rate
        self.key_position_rate = key_position_rate
        self.window_range = window_range
        self.n_speakers = n_speakers

        conv_channels = convolutions[0].out_channels
        self.embed_query_positions = PositionEmbedding(
            self.full_name(),
            max_positions,
            conv_channels,
            padding_idx=padding_idx,
            dtype=dtype)
        self.embed_keys_positions = PositionEmbedding(
            self.full_name(),
            max_positions,
            embed_dim,
            padding_idx=padding_idx,
            dtype=dtype)

        # Used to compute multiplier for position rate
        if n_speakers > 1:
            self.speaker_proj1 = FC(self.full_name(),
                                    speaker_dim,
                                    1,
                                    act="sigmoid",
                                    dropout=dropout,
                                    dtype=dtype)
            self.speaker_proj2 = FC(self.full_name(),
                                    speaker_dim,
                                    1,
                                    act="sigmoid",
                                    dropout=dropout,
                                    dtype=dtype)

        # prenet
        self.prenet = []
        in_channels = mel_dim * r
        std_mul = 1.0
        for (out_channels, filter_size, dilation) in preattention:
            if in_channels != out_channels:
                # conv1d & relu
                self.prenet.append(
                    Conv1D(
                        self.full_name(),
                        in_channels,
                        out_channels,
                        filter_size=1,
                        std_mul=std_mul,
                        act="relu"))
                in_channels = out_channels
                std_mul = 2.0
            self.prenet.append(
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    in_channels,
                    out_channels,
                    filter_size,
                    dilation,
                    std_mul=std_mul,
                    dropout=dropout,
                    causal=True,
                    residual=True,
                    dtype=dtype))
            in_channels = out_channels
            std_mul = 4.0
        for i, layer in enumerate(self.prenet):
            self.add_sublayer("prenet_{}".format(i), layer)

        self.use_memory_mask = use_memory_mask
        if isinstance(attention, bool):
            self.attention = [attention] * len(convolutions)
        else:
            self.attention = attention

        if isinstance(force_monotonic_attention, bool):
            self.force_monotonic_attention = [force_monotonic_attention
                                              ] * len(convolutions)
        else:
            self.force_monotonic_attention = force_monotonic_attention

        # causual convolution & attention
        self.conv_attn = []
        for use_attention, (out_channels, filter_size,
                            dilation) in zip(self.attention, convolutions):
            assert (
                in_channels == out_channels
            ), "the stack of convolution & attention does not change channels"
            conv_layer = Conv1DGLU(
                self.full_name(),
                n_speakers,
                speaker_dim,
                in_channels,
                out_channels,
                filter_size,
                dilation,
                std_mul=std_mul,
                dropout=dropout,
                causal=True,
                residual=False,
                dtype=dtype)
            attn_layer = (AttentionLayer(
                self.full_name(),
                out_channels,
                embed_dim,
                dropout=dropout,
                window_range=window_range,
                key_projection=key_projection,
                value_projection=value_projection,
                dtype=dtype) if use_attention else None)
            in_channels = out_channels
            std_mul = 4.0
            self.conv_attn.append((conv_layer, attn_layer))
        for i, (conv_layer, attn_layer) in enumerate(self.conv_attn):
            self.add_sublayer("conv_{}".format(i), conv_layer)
            if attn_layer is not None:
                self.add_sublayer("attn_{}".format(i), attn_layer)

        # 1 * 1 conv to transform channels
        self.last_conv = Conv1D(
            self.full_name(),
            in_channels,
            mel_dim * r,
            filter_size=1,
            std_mul=std_mul,
            dropout=dropout,
            dtype=dtype)

        # mel (before sigmoid) to done hat
        self.fc = Conv1D(
            self.full_name(), mel_dim * r, 1, filter_size=1, dtype=dtype)

        # decoding configs
        self.max_decoder_steps = 200
        self.min_decoder_steps = 10

    def freeze_positional_encoding(self):
        for param in self.embed_query_positions.parameters():
            param.trainable = False
        for param in self.embed_keys_positions.parameters():
            param.trainable = False

    def forward(self,
                encoder_out,
                lengths,
                inputs,
                text_positions,
                frame_positions,
                speaker_embed=None):
        """
        Compute decoder outputs with ground truth mel spectrogram.

        Args:
            encoder_out (Tuple(Variable, Variable)): 
                keys (Variable): shape(B, C_emb, 1, T_enc), the key
                    representation from an encoder, where C_emb means
                    text embedding size.
                values (Variable): shape(B, C_emb, 1, T_enc), the value
                    representation from an encoder, where C_emb means
                    text embedding size.
            lengths (Variable): Shape(batch_size,), dtype: int64, valid lengths
                of text inputs for each example.
            inputs (Variable): Shape(B, C_mel, 1, T_mel), ground truth
                mel-spectrogram, which is used as decoder inputs when training.
594
            text_positions (Variable): Shape(B, T_enc), dtype: int64.
F
Feiyu Chan 已提交
595 596
                Positions indices for text inputs for the encoder, where 
                T_enc means the encoder timesteps.
597
            frame_positions (Variable): Shape(B, T_dec // r), dtype: 
F
Feiyu Chan 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
                int64. Positions indices for each decoder time steps.
            speaker_embed: shape(batch_size, speaker_dim), speaker embedding, 
                only used for multispeaker model.


        Returns:
            outputs (Variable): Shape(B, C_mel * r, 1, T_mel // r). Decoder
                outputs, where C_mel means the channels of mel-spectrogram, r 
                means the outputs per decoder step, T_mel means the length(time
                steps) of mel spectrogram. Note that, when r > 1, the decoder
                outputs r frames of mel spectrogram per step.
            alignments (Variable): Shape(N, B, T_mel // r, T_enc), the alignment
                tensor between the decoder and the encoder, where N means number
                of Attention Layers, T_mel means the length of mel spectrogram,
                r means the outputs per decoder step, T_enc means the encoder
                time steps.
            done (Variable): Shape(B, 1, 1, T_mel // r), probability that the
                outputs should stop.
            decoder_states (Variable): Shape(B, C_dec, 1, T_mel // r), decoder
                hidden states, where C_dec means the channels of decoder states.
        """

        # pack multiple frames if necessary
        B, _, _, T = inputs.shape
        if self.r > 1 and inputs.shape[1] == self.mel_dim:
            if T % self.r != 0:
                inputs = fluid.layers.slice(
                    inputs, axes=[3], starts=[0], ends=[T - T % self.r])
            inputs = fluid.layers.transpose(inputs, [0, 3, 2, 1])
            inputs = fluid.layers.reshape(
                inputs, shape=[B, -1, 1, self.mel_dim * self.r])
            inputs = fluid.layers.transpose(inputs, [0, 3, 2, 1])
        assert inputs.shape[3] == T // self.r

        if speaker_embed is not None:
            speaker_embed_bc1t = expand_speaker_embed(inputs, speaker_embed)
            speaker_embed_bc1t = fluid.layers.dropout(
                speaker_embed_bc1t,
                self.dropout,
                dropout_implementation="upscale_in_train")
        else:
            speaker_embed_bc1t = None

        keys, values = encoder_out

        if self.use_memory_mask and lengths is not None:
            mask = gen_mask2(lengths, keys.shape[-1])
        else:
            mask = None

        if text_positions is not None:
            w = self.key_position_rate
            if self.n_speakers > 1:
                w = w * fluid.layers.reshape(
                    self.speaker_proj1(speaker_embed), [B, -1])
            text_pos_embed = self.embed_keys_positions(text_positions, w)
            text_pos_embed = fluid.layers.transpose(
                fluid.layers.reshape(
                    text_pos_embed, shape=text_pos_embed.shape + [1]),
                perm=[0, 2, 3, 1])
            keys = keys + text_pos_embed

        if frame_positions is not None:
            w = self.query_position_rate
            if self.n_speakers > 1:
                w = w * fluid.layers.reshape(
                    self.speaker_proj2(speaker_embed), [B, -1])
            frame_pos_embed = self.embed_query_positions(frame_positions, w)
            frame_pos_embed = fluid.layers.transpose(
                fluid.layers.reshape(
                    frame_pos_embed, shape=frame_pos_embed.shape + [1]),
                perm=[0, 2, 3, 1])
        else:
            frame_pos_embed = None

        x = inputs
        x = fluid.layers.dropout(
            x, self.dropout, dropout_implementation="upscale_in_train")

        # Prenet
        for layer in self.prenet:
            x = (layer(x, speaker_embed_bc1t)
                 if isinstance(layer, Conv1DGLU) else layer(x))

        # Convolution & Multi-hop Attention
        alignments = []
        for conv, attn in self.conv_attn:
            residual = x
            x = conv(x, speaker_embed_bc1t)
            if attn is not None:
                if frame_pos_embed is not None:
                    x = x + frame_pos_embed
                x, attn_scores = attn(x, (keys, values), mask)
                alignments.append(attn_scores)
            x = fluid.layers.scale(residual + x, scale=np.sqrt(0.5))

        alignments = fluid.layers.stack(alignments)

        decoder_states = x
        x = self.last_conv(x)
        outputs = fluid.layers.sigmoid(x)
        done = fluid.layers.sigmoid(self.fc(x))

        return outputs, alignments, done, decoder_states

    def decode(self,
               encoder_out,
               text_positions,
               speaker_embed=None,
               initial_input=None,
               test_inputs=None):
        """
        Decode without ground truth mel spectrogram.
        
        Args:
            encoder_out (Tuple(Variable, Variable)): 
                keys (Variable): shape(B, C_emb, 1, T_enc), the key
                    representation from an encoder, where C_emb means
                    text embedding size.
                values (Variable): shape(B, C_emb, 1, T_enc), the value
                    representation from an encoder, where C_emb means
                    text embedding size.
720
            text_positions (Variable): Shape(B, T_enc), dtype: int64.
F
Feiyu Chan 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
                Positions indices for text inputs for the encoder, where 
                T_enc means the encoder timesteps.
               
            speaker_embed (Variable): Shape(B, C_sp), where C_sp means 
               speaker embedding size. It is only used for multispeaker model.
            initial_input (Variable, optional): Shape(B, C_mel * r, 1, 1).
               The input for the first time step of the decoder. If r > 0,
               it is a packed r frames of mel spectrograms.
            test_inputs (Variable, optional): Shape(B, C_mel, 1, T_test),
               where T_test means the time steps of test inputs. This is 
               only used for testing this method, the user should just leave
               it None.

        Returns:
            outputs (Variable): Shape(B, C_mel * r, 1, T_mel // r). Decoder
                outputs, where C_mel means the channels of mel-spectrogram, r 
                means the outputs per decoder step, T_mel means the length(time
                steps) of output mel spectrogram. Note that, when r > 1, 
                the decoder outputs r frames of mel spectrogram per step.
            alignments (Variable): Shape(B, T_mel // r, T_enc), the alignment
                tensor between the decoder and the encoder, T_mel means the 
                length of output mel spectrogram, r means the outputs per
                decoder step, T_enc means the encoder time steps.
            done (Variable): Shape(B, 1, 1, T_mel // r), probability that the
                outputs stops.
            decoder_states (Variable): Shape(B, C_dec, 1, T_mel // r), decoder
                hidden states, where C_dec means the channels of decoder states.
        """
        self.start_new_sequence()
        keys, values = encoder_out
        B = keys.shape[0]
        assert B == 1, "now only supports single instance inference"
        mask = None  # no mask because we use single instance decoding

        w = self.key_position_rate
        if speaker_embed is not None:
            if self.n_speakers > 1:
                w = w * fluid.layers.reshape(
                    self.speaker_proj1(speaker_embed), shape=[B, -1])
            speaker_embed_bc11 = fluid.layers.reshape(
                speaker_embed, shape=[B, speaker_embed.shape[1], 1, 1])
        else:
            speaker_embed_bc11 = None

        if text_positions is not None:
            text_pos_embed = self.embed_keys_positions(text_positions, w)
            text_pos_embed = fluid.layers.transpose(
                fluid.layers.reshape(
                    text_pos_embed, shape=text_pos_embed.shape + [1]),
                perm=[0, 2, 3, 1])
            keys = keys + text_pos_embed

        # start decoding, init accumulators
        decoder_states = []
        outputs = []
        alignments = []
        dones = []

        last_attended = [None] * len(self.conv_attn)
        for idx, monotonic_attn in enumerate(self.force_monotonic_attention):
            if monotonic_attn:
                last_attended[idx] = 0

        t = 0  # decoder time step
        if initial_input is None:
            initial_input = fluid.layers.zeros(
                shape=[B, self.mel_dim * self.r, 1, 1], dtype=keys.dtype)
        current_input = initial_input

        while True:
            frame_pos = fluid.layers.fill_constant(
792
                shape=[B, 1], value=t + 1, dtype="int64")
F
Feiyu Chan 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            w = self.query_position_rate
            if self.n_speakers > 1:
                w = w * fluid.layers.reshape(
                    self.speaker_proj2(speaker_embed), shape=[B, -1])
            frame_pos_embed = self.embed_query_positions(frame_pos, w)
            frame_pos_embed = fluid.layers.transpose(
                fluid.layers.reshape(
                    frame_pos_embed, shape=frame_pos_embed.shape + [1]),
                perm=[0, 2, 3, 1])

            if test_inputs is not None:
                if t >= test_inputs.shape[3]:
                    break
                current_input = fluid.layers.reshape(
                    test_inputs[:, :, :, t],
                    shape=[B, test_inputs.shape[1], 1, 1])
            else:
                if t > 0:
                    current_input = outputs[-1]

            x = current_input
            x = fluid.layers.dropout(
                x, self.dropout, dropout_implementation="upscale_in_train")

            # Prenet
            for layer in self.prenet:
                x = (layer.add_input(x, speaker_embed_bc11)
                     if isinstance(layer, Conv1DGLU) else layer.add_input(x))

            step_attn_scores = []
            # Casual convolutions + Multi-hop attentions
            for i, (conv, attn) in enumerate(self.conv_attn):
                residual = x
                x = conv.add_input(x, speaker_embed_bc11)
                if attn is not None:
                    if frame_pos_embed is not None:
                        x = x + frame_pos_embed
                    x, attn_scores = attn(x, (keys, values), mask,
                                          last_attended[i])
                    step_attn_scores.append(attn_scores)

                    # update last attended when necessary
                    if self.force_monotonic_attention[i]:
                        last_attended[i] = np.argmax(
                            attn_scores.numpy(), axis=-1)[0][0]
                x = fluid.layers.scale(residual + x, scale=np.sqrt(0.5))
            if len(step_attn_scores):
                average_attn_scores = fluid.layers.reduce_mean(
                    fluid.layers.stack(step_attn_scores), dim=0)
            else:
                average_attn_scores = None

            decoder_state = x
            x = self.last_conv.add_input(x)

            output = fluid.layers.sigmoid(x)  # (B, r * C_mel, 1, 1)
            done = fluid.layers.sigmoid(self.fc(x))  # (B, 1, 1, 1)

            decoder_states.append(decoder_state)
            outputs.append(output)
            if average_attn_scores is not None:
                alignments.append(average_attn_scores)
            dones.append(done)

            t += 1

            if test_inputs is None:
                if (fluid.layers.reduce_min(done).numpy()[0] > 0.5 and
                        t > self.min_decoder_steps):
                    break
                elif t > self.max_decoder_steps:
                    break

        outputs = fluid.layers.concat(outputs, axis=3)
        if len(alignments):
            alignments = fluid.layers.concat(alignments, axis=1)
        else:
            alignments = None
        dones = fluid.layers.concat(dones, axis=3)
        decoder_states = fluid.layers.concat(decoder_states, axis=3)

        return outputs, alignments, dones, decoder_states

    def start_new_sequence(self):
        for layer in self.sublayers():
            if isinstance(layer, conv.Conv1D):
                layer.start_new_sequence()


class Converter(dg.Layer):
    """
    Vocoder that transforms mel spectrogram (or ecoder hidden states) 
    to waveform.
    """

    def __init__(self,
                 name_scope,
                 n_speakers,
                 speaker_dim,
                 in_channels,
                 linear_dim,
                 convolutions=(ConvSpec(256, 5, 1)) * 4,
                 time_upsampling=1,
                 dropout=0.1,
                 dtype="float32"):
        super(Converter, self).__init__(name_scope, dtype=dtype)

        self.n_speakers = n_speakers
        self.speaker_dim = speaker_dim
        self.in_channels = in_channels
        self.linear_dim = linear_dim
        self.time_upsampling = time_upsampling
        self.dropout = dropout

        target_channels = convolutions[0][0]

        # conv proj to target channels
        self.first_conv_proj = Conv1D(
            self.full_name(),
            in_channels,
            target_channels,
            filter_size=1,
            std_mul=1.0,
            dtype=dtype)

        # Idea from nyanko
        # upsampling convolitions
        if time_upsampling == 4:
            self.upsampling_convolutions = [
                Conv1DTranspose(
                    self.full_name(),
                    target_channels,
                    target_channels,
                    filter_size=2,
                    padding=0,
                    stride=2,
                    std_mul=1.0,
                    dtype=dtype),
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    target_channels,
                    target_channels,
                    filter_size=3,
                    dilation=1,
                    std_mul=1.0,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype),
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    target_channels,
                    target_channels,
                    filter_size=3,
                    dilation=3,
                    std_mul=4.0,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype),
                Conv1DTranspose(
                    self.full_name(),
                    target_channels,
                    target_channels,
                    filter_size=2,
                    padding=0,
                    stride=2,
                    std_mul=4.0,
                    dtype=dtype),
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    target_channels,
                    target_channels,
                    filter_size=3,
                    dilation=1,
                    std_mul=1.0,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype),
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    target_channels,
                    target_channels,
                    filter_size=3,
                    dilation=3,
                    std_mul=4.0,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype),
            ]

        elif time_upsampling == 2:
            self.upsampling_convolutions = [
                Conv1DTranspose(
                    self.full_name(),
                    target_channels,
                    target_channels,
                    filter_size=2,
                    padding=0,
                    stride=2,
                    std_mul=1.0,
                    dtype=dtype),
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    target_channels,
                    target_channels,
                    filter_size=3,
                    dilation=1,
                    std_mul=1.0,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype),
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    target_channels,
                    target_channels,
                    filter_size=3,
                    dilation=3,
                    std_mul=4.0,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype),
            ]
        elif time_upsampling == 1:
            self.upsampling_convolutions = [
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    target_channels,
                    target_channels,
                    filter_size=3,
                    dilation=3,
                    std_mul=4.0,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype)
            ]
        else:
            raise ValueError("Not supported.")

        for i, layer in enumerate(self.upsampling_convolutions):
            self.add_sublayer("upsampling_convolutions_{}".format(i), layer)

        # post conv layers
        std_mul = 4.0
        in_channels = target_channels
        self.convolutions = []
        for (out_channels, filter_size, dilation) in convolutions:
            if in_channels != out_channels:
                self.convolutions.append(
                    Conv1D(
                        self.full_name(),
                        in_channels,
                        out_channels,
                        filter_size=1,
                        std_mul=std_mul,
                        act="relu",
                        dtype=dtype))
                in_channels = out_channels
                std_mul = 2.0
            self.convolutions.append(
                Conv1DGLU(
                    self.full_name(),
                    n_speakers,
                    speaker_dim,
                    in_channels,
                    out_channels,
                    filter_size=filter_size,
                    dilation=dilation,
                    std_mul=std_mul,
                    dropout=dropout,
                    causal=False,
                    residual=True,
                    dtype=dtype))
            in_channels = out_channels
            std_mul = 4.0

        for i, layer in enumerate(self.convolutions):
            self.add_sublayer("convolutions_{}".format(i), layer)

        # final conv proj, channel transformed to linear dim
        self.last_conv_proj = Conv1D(
            self.full_name(),
            in_channels,
            linear_dim,
            filter_size=1,
            std_mul=std_mul,
            dropout=dropout,
            act="sigmoid",
            dtype=dtype)

    def forward(self, x, speaker_embed=None):
        """
        Convert mel spectrogram or decoder hidden states to linear spectrogram.
        
        Args:
            x (Variable): Shape(B, C_in, 1, T_mel), converter inputs, where
                C_in means the input channel for the converter. Note that it 
                can be either C_mel (channel of mel spectrogram) or C_dec // r.
                When use mel_spectrogram as the input of converter, C_in = 
                C_mel; and when use decoder states as the input of converter,
                C_in = C_dec // r. In this scenario, decoder hidden states are
                treated as if they were r outputs per decoder step and are
                unpacked before passing to the converter.
            speaker_embed (Variable, optional): shape(B, C_sp), speaker
                embedding, where C_sp means the speaker embedding size.

        Returns:
            out (Variable): Shape(B, C_lin, 1, T_lin), the output linear 
                spectrogram, where C_lin means the channel of linear 
                spectrogram and T_linear means the length(time steps) of linear
                spectrogram. T_line = time_upsampling * T_mel, which depends 
                on the time_upsampling converter.
        """
        speaker_embed_bc1t = None
        if speaker_embed is not None:
            speaker_embed_bc1t = expand_speaker_embed(x, speaker_embed, tdim=-1)
            speaker_embed_bc1t = fluid.layers.dropout(
                speaker_embed_bc1t,
                self.dropout,
                dropout_implementation="upscale_in_train")

        x = self.first_conv_proj(x)

        for layer in chain(self.upsampling_convolutions, self.convolutions):
            # time_steps may change when timt_upsampling > 1
            if (speaker_embed_bc1t is not None and
                    speaker_embed_bc1t.shape[3] != x.shape[3]):
                speaker_embed_bc1t = expand_speaker_embed(
                    x, speaker_embed, tdim=3)
                speaker_embed_bc1t = fluid.layers.dropout(
                    speaker_embed_bc1t,
                    self.dropout,
                    dropout_implementation="upscale_in_train")
            x = (layer(x, speaker_embed_bc1t)
                 if isinstance(layer, Conv1DGLU) else layer(x))

        out = self.last_conv_proj(x)
        return out


class DeepVoiceTTS(dg.Layer):
    def __init__(self, name_scope, n_speakers, speaker_dim,
                 speaker_embedding_weight_std, n_vocab, embed_dim,
                 text_padding_idx, text_embedding_weight_std,
                 freeze_text_embedding, encoder_convolutions, max_positions,
                 position_padding_idx, trainable_positional_encodings, mel_dim,
                 r, prenet_convolutions, attentive_convolutions, attention,
                 use_memory_mask, force_monotonic_attention,
                 query_position_rate, key_position_rate, window_range,
                 key_projection, value_projection, linear_dim,
                 postnet_convolutions, time_upsampling, dropout,
                 use_decoder_state_for_postnet_input, dtype):
        super(DeepVoiceTTS, self).__init__(name_scope, dtype)

        self.n_speakers = n_speakers
        self.speaker_dim = speaker_dim
        if n_speakers > 1:
            self.speaker_embedding = Embedding(
                self.full_name(),
                n_speakers,
                speaker_dim,
                padding_idx=None,
                std=speaker_embedding_weight_std,
                dtype=dtype)

        self.embed_dim = embed_dim
        self.mel_dim = mel_dim
        self.r = r

        self.seq2seq = ConvS2S(
            self.full_name(), n_speakers, speaker_dim,
            speaker_embedding_weight_std, n_vocab, embed_dim, text_padding_idx,
            text_embedding_weight_std, freeze_text_embedding,
            encoder_convolutions, max_positions, position_padding_idx,
            trainable_positional_encodings, mel_dim, r, prenet_convolutions,
            attentive_convolutions, attention, use_memory_mask,
            force_monotonic_attention, query_position_rate, key_position_rate,
            window_range, key_projection, value_projection, dropout, dtype)

        self.use_decoder_state_for_postnet_input = use_decoder_state_for_postnet_input
        if use_decoder_state_for_postnet_input:
            assert (
                attentive_convolutions[-1].out_channels % self.r == 0
            ), "when using decoder states as converter input, you must assure the decoder state channels can be divided by r"
            converter_input_channels = attentive_convolutions[
                -1].out_channels // r
        else:
            converter_input_channels = mel_dim

        self.converter_input_channels = converter_input_channels
        self.linear_dim = linear_dim
        self.converter = Converter(
            self.full_name(),
            n_speakers,
            speaker_dim,
            converter_input_channels,
            linear_dim,
            convolutions=postnet_convolutions,
            time_upsampling=time_upsampling,
            dropout=dropout,
            dtype=dtype)

    def forward(self,
                text_sequences,
                valid_lengths,
                mel_inputs,
                speaker_indices=None,
                text_positions=None,
                frame_positions=None):
        """
        Encode text sequence and decode with ground truth mel spectrogram.
                
        Args:
1225
            text_sequences (Variable): Shape(B, T_enc), dtype: int64. Ihe
F
Feiyu Chan 已提交
1226 1227 1228 1229 1230
                input text indices. T_enc means the timesteps of text_sequences.
            valid_lengths (Variable): shape(batch_size,), dtype: int64,
                valid lengths for each example in text_sequences.
            mel_inputs (Variable): Shape(B, C_mel, 1, T_mel), ground truth
                mel-spectrogram, which is used as decoder inputs when training. 
1231
            speaker_indices (Variable, optional): Shape(Batch_size),
F
Feiyu Chan 已提交
1232 1233
                dtype: int64. Speaker index for each example. This arg is not
                None only when the model is a multispeaker model.
1234
            text_positions (Variable): Shape(B, T_enc), dtype: int64.
F
Feiyu Chan 已提交
1235 1236
                Positions indices for text inputs for the encoder, where 
                T_enc means the encoder timesteps.
1237
            frame_positions (Variable): Shape(B, T_dec // r), dtype: 
F
Feiyu Chan 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
                int64. Positions indices for each decoder time steps.

        Returns:
            mel_outputs (Variable): Shape(B, C_mel * r, 1, T_mel // r). Decoder
                outputs, where C_mel means the channels of mel-spectrogram, r 
                means the outputs per decoder step, T_mel means the length(time
                steps) of mel spectrogram. Note that, when r > 1, the decoder
                outputs r frames of mel spectrogram per step.
            linear_outputs (Variable): Shape(B, C_lin, 1, T_lin), the output
                linear spectrogram, where C_lin means the channel of linear 
                spectrogram and T_linear means the length(time steps) of linear
                spectrogram. T_line = time_upsampling * T_mel, which depends 
                on the time_upsampling converter.
            alignments (Variable): Shape(N, B, T_mel // r, T_enc), the alignment
                tensor between the decoder and the encoder, where N means number
                of Attention Layers, T_mel means the length of mel spectrogram,
                r means the outputs per decoder step, T_enc means the encoder
                time steps.
            done (Variable): Shape(B, 1, 1, T_mel // r), probability that the
                outputs should stop.
        """

        batch_size = text_sequences.shape[0]
        if self.n_speakers == 1:
            assert speaker_indices is None, "this model does not support multi-speaker"

        if speaker_indices is not None:
            speaker_embed = self.speaker_embedding(speaker_indices)
        else:
            speaker_embed = None

        mel_outputs, alignments, done, decoder_states = self.seq2seq(
            text_sequences, valid_lengths, mel_inputs, speaker_embed,
            text_positions, frame_positions)

        # unpack multi frames
        if self.r > 1:
            mel_outputs = fluid.layers.transpose(mel_outputs, [0, 3, 2, 1])
            mel_outputs = fluid.layers.reshape(
                mel_outputs, [batch_size, -1, 1, self.mel_dim])
            mel_outputs = fluid.layers.transpose(mel_outputs, [0, 3, 2, 1])

        if self.use_decoder_state_for_postnet_input:
            postnet_input = fluid.layers.transpose(decoder_states, [0, 3, 2, 1])
            postnet_input = fluid.layers.reshape(
                postnet_input,
                [batch_size, -1, 1, self.converter_input_channels])
            postnet_input = fluid.layers.transpose(postnet_input, [0, 3, 2, 1])
        else:
            postnet_input = mel_outputs

        linear_outputs = self.converter(postnet_input, speaker_embed)

        return mel_outputs, linear_outputs, alignments, done

    def transduce(self, text_sequences, text_positions, speaker_indices=None):
        """
        Encode text sequence and decode without ground truth mel spectrogram.
        
        Args:
1298
            text_sequences (Variable): Shape(B, T_enc), dtype: int64. Ihe
F
Feiyu Chan 已提交
1299
                input text indices. T_enc means the timesteps of text_sequences.
1300
            text_positions (Variable): Shape(B, T_enc), dtype: int64.
F
Feiyu Chan 已提交
1301 1302
                Positions indices for text inputs for the encoder, where 
                T_enc means the encoder timesteps.
1303
            speaker_indices (Variable, optional): Shape(Batch_size),
F
Feiyu Chan 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
                dtype: int64. Speaker index for each example. This arg is not
                None only when the model is a multispeaker model.

        Returns:
            mel_outputs (Variable): Shape(B, C_mel * r, 1, T_mel // r). Decoder
                outputs, where C_mel means the channels of mel-spectrogram, r 
                means the outputs per decoder step, T_mel means the length(time
                steps) of mel spectrogram. Note that, when r > 1, the decoder
                outputs r frames of mel spectrogram per step.
            linear_outputs (Variable): Shape(B, C_lin, 1, T_lin), the output
                linear spectrogram, where C_lin means the channel of linear 
                spectrogram and T_linear means the length(time steps) of linear
                spectrogram. T_line = time_upsampling * T_mel, which depends 
                on the time_upsampling converter.
            alignments (Variable): Shape(B, T_mel // r, T_enc), the alignment
                tensor between the decoder and the encoder, T_mel means the
                length of mel spectrogram, r means the outputs per decoder
                step, T_enc means the encoder time steps.
            done (Variable): Shape(B, 1, 1, T_mel // r), probability that the
                outputs should stop.
        """
        batch_size = text_sequences.shape[0]

        if speaker_indices is not None:
            speaker_embed = self.speaker_embedding(speaker_indices)
        else:
            speaker_embed = None

        mel_outputs, alignments, done, decoder_states = self.seq2seq.transduce(
            text_sequences, text_positions, speaker_embed)

        if self.r > 1:
            mel_outputs = fluid.layers.transpose(mel_outputs, [0, 3, 2, 1])
            mel_outputs = fluid.layers.reshape(
                mel_outputs, [batch_size, -1, 1, self.mel_dim])
            mel_outputs = fluid.layers.transpose(mel_outputs, [0, 3, 2, 1])

        if self.use_decoder_state_for_postnet_input:
            postnet_input = fluid.layers.transpose(decoder_states, [0, 3, 2, 1])
            postnet_input = fluid.layers.reshape(
                postnet_input,
                [batch_size, -1, 1, self.converter_input_channels])
            postnet_input = fluid.layers.transpose(postnet_input, [0, 3, 2, 1])
        else:
            postnet_input = mel_outputs

        linear_outputs = self.converter(postnet_input, speaker_embed)

        return mel_outputs, linear_outputs, alignments, done


class ConvS2S(dg.Layer):
    def __init__(self, name_scope, n_speakers, speaker_dim,
                 speaker_embedding_weight_std, n_vocab, embed_dim,
                 text_padding_idx, text_embedding_weight_std,
                 freeze_text_embedding, encoder_convolutions, max_positions,
                 position_padding_idx, trainable_positional_encodings, mel_dim,
                 r, prenet_convolutions, attentive_convolutions, attention,
                 use_memory_mask, force_monotonic_attention,
                 query_position_rate, key_position_rate, window_range,
                 key_projection, value_projection, dropout, dtype):
        super(ConvS2S, self).__init__(name_scope, dtype)

        self.freeze_text_embedding = freeze_text_embedding
        self.trainable_positional_encodings = trainable_positional_encodings

        self.n_speakers = n_speakers
        self.speaker_dim = speaker_dim

        self.embed_dim = embed_dim
        self.encoder = Encoder(
            self.full_name(),
            n_vocab,
            embed_dim,
            n_speakers,
            speaker_dim,
            padding_idx=None,
            embedding_weight_std=text_embedding_weight_std,
            convolutions=encoder_convolutions,
            max_positions=max_positions,
            dropout=dropout,
            dtype=dtype)
        if freeze_text_embedding:
            self.encoder.freeze_embedding()

        self.mel_dim = mel_dim
        self.r = r
        self.decoder = Decoder(
            self.full_name(),
            n_speakers,
            speaker_dim,
            embed_dim,
            mel_dim,
            r,
            max_positions,
            position_padding_idx,
            preattention=prenet_convolutions,
            convolutions=attentive_convolutions,
            attention=attention,
            dropout=dropout,
            use_memory_mask=use_memory_mask,
            force_monotonic_attention=force_monotonic_attention,
            query_position_rate=query_position_rate,
            key_position_rate=key_position_rate,
            window_range=window_range,
            key_projection=key_projection,
            value_projection=key_projection,
            dtype=dtype)
        if not trainable_positional_encodings:
            self.decoder.freeze_positional_encoding()

    def forward(self,
                text_sequences,
                valid_lengths,
                mel_inputs,
                speaker_embed=None,
                text_positions=None,
                frame_positions=None):
        """
        Encode text sequence and decode with ground truth mel spectrogram.

        Args:
1426
            text_sequences (Variable): Shape(B, T_enc), dtype: int64. Ihe
F
Feiyu Chan 已提交
1427 1428 1429 1430 1431 1432 1433 1434
                input text indices. T_enc means the timesteps of text_sequences.
            valid_lengths (Variable): shape(batch_size,), dtype: int64,
                valid lengths for each example in text_sequences.
            mel_inputs (Variable): Shape(B, C_mel, 1, T_mel), ground truth
                mel-spectrogram, which is used as decoder inputs when training. 
            speaker_embed (Variable, optional): Shape(Batch_size, speaker_dim),
                dtype: float32. Speaker embeddings. This arg is not None only
                when the model is a multispeaker model.
1435
            text_positions (Variable): Shape(B, T_enc), dtype: int64.
F
Feiyu Chan 已提交
1436 1437
                Positions indices for text inputs for the encoder, where 
                T_enc means the encoder timesteps.
1438
            frame_positions (Variable): Shape(B, T_dec // r), dtype: 
F
Feiyu Chan 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
                int64. Positions indices for each decoder time steps.

        Returns:
            mel_outputs (Variable): Shape(B, C_mel * r, 1, T_mel // r). Decoder
                outputs, where C_mel means the channels of mel-spectrogram, r 
                means the outputs per decoder step, T_mel means the length(time
                steps) of mel spectrogram. Note that, when r > 1, the decoder
                outputs r frames of mel spectrogram per step.
            alignments (Variable): Shape(N, B, T_mel // r, T_enc), the alignment
                tensor between the decoder and the encoder, where N means number
                of Attention Layers, T_mel means the length of mel spectrogram,
                r means the outputs per decoder step, T_enc means the encoder
                time steps.
            done (Variable): Shape(B, 1, 1, T_mel // r), probability that the
                outputs should stop.
            decoder_states (Variable): Shape(B, C_dec, 1, T_mel // r), decoder
                hidden states, where C_dec means the channels of decoder states.
        """
        keys, values = self.encoder(text_sequences, speaker_embed)
        mel_outputs, alignments, done, decoder_states = self.decoder(
            (keys, values), valid_lengths, mel_inputs, text_positions,
            frame_positions, speaker_embed)

        return mel_outputs, alignments, done, decoder_states

    def transduce(self, text_sequences, text_positions, speaker_embed=None):
        """
        Encode text sequence and decode without ground truth mel spectrogram.
        
        Args:
1469
            text_sequences (Variable): Shape(B, T_enc), dtype: int64. Ihe
F
Feiyu Chan 已提交
1470
                input text indices. T_enc means the timesteps of text_sequences.
1471
            text_positions (Variable): Shape(B, T_enc), dtype: int64.
F
Feiyu Chan 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
                Positions indices for text inputs for the encoder, where 
                T_enc means the encoder timesteps.
            speaker_embed (Variable, optional): Shape(Batch_size, speaker_dim),
                dtype: float32. Speaker embeddings. This arg is not None only
                when the model is a multispeaker model.

        Returns:
            mel_outputs (Variable): Shape(B, C_mel * r, 1, T_mel // r). Decoder
                outputs, where C_mel means the channels of mel-spectrogram, r 
                means the outputs per decoder step, T_mel means the length(time
                steps) of mel spectrogram. Note that, when r > 1, the decoder
                outputs r frames of mel spectrogram per step.
            alignments (Variable): Shape(B, T_mel // r, T_enc), the alignment
                tensor between the decoder and the encoder, T_mel means the
                length of mel spectrogram, r means the outputs per decoder
                step, T_enc means the encoder time steps.
            done (Variable): Shape(B, 1, 1, T_mel // r), probability that the
                outputs should stop.
            decoder_states (Variable): Shape(B, C_dec, 1, T_mel // r), decoder
                hidden states, where C_dec means the channels of decoder states.
        """
        keys, values = self.encoder(text_sequences, speaker_embed)
        mel_outputs, alignments, done, decoder_states = self.decoder.decode(
            (keys, values), text_positions, speaker_embed)

        return mel_outputs, alignments, done, decoder_states